基于Twomey算法的CT图像重建
Computerized tomographic image reconstruction based on Twomey algorithm
摘要
针对不完全投影数据的CT图像重建,本文将原本用于反演微粒粒径分布的Twomey算法引入并应用到CT图像重建中。在代数迭代层面上把其与代数重建技术(ART)算法和同步迭代重建技术(SIRT)算法分析对比后进行了计算机模拟实验。仿真结果显示:本文算法所求得的解的精度要优于主流的ART和SIRT算法。
针对不完全投影数据的CT图像重建,本文将原本用于反演微粒粒径分布的Twomey算法引入并应用到CT图像重建中。在代数迭代层面上把其与代数重建技术(ART)算法和同步迭代重建技术(SIRT)算法分析对比后进行了计算机模拟实验。仿真结果显示:本文算法所求得的解的精度要优于主流的ART和SIRT算法。
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2011年第S1期332-335,共4页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金国际合作项目(60911130128)
参考文献9
-
1Hudson HM,Larkin RS.Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging . 1994
-
2Cimmino,G.Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica . 1938
-
3Shepp L A,Logan B F.The fourier reconstruction of a head section. IEEE Transactions on Nuclear Science . 1974
-
4Censor Y.Finite series-expansion reconstruction methods. Proceedings of Tricomm . 1983
-
5Herman GT.Image reconstruction from projection: the fundamentals of computerized tomography. . 1980
-
6Andersen A H,Kak A C.Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic Imaging . 1984
-
7D. L. Donoho.Compressed sensing. IEEE Transactions on Information Theory . 2006
-
8Goldstein T,Osher S.The split Bregman method for l1 regularized problems. ftp://ftp.math.ucla.edu/pub/camreport/cam08-29.pdf . 2008
-
9S.Twomey." Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions.". Journal of Computational Physics . 1975