期刊文献+

纳米门炭结构及超级电容特性

Structure and ultracapacitive behavior of nanogate carbons
下载PDF
导出
摘要 以生石油焦为原料,采用KOH活化法制备纳米门炭。采用氮气吸附法、X射线衍射(XRD)和光电子能谱衍射(XPS)对其孔结构、微晶结构和表面性质进行分析,并以其为电极组装超级电容器,测试了电容特性。结果表明:纳米门炭可在3.5V电压下工作,通过首次充电过程中的电化学活化而获得较大的比电容。样品N900比表面积仅为61m2/g,但比电容确高达136.7F/g,能量密度高达58.1Wh/kg。 以生石油焦为原料,采用KOH活化法制备纳米门炭。采用氮气吸附法、X射线衍射(XRD)和光电子能谱衍射(XPS)对其孔结构、微晶结构和表面性质进行分析,并以其为电极组装超级电容器,测试了电容特性。结果表明:纳米门炭可在3.5V电压下工作,通过首次充电过程中的电化学活化而获得较大的比电容。样品N900比表面积仅为61m2/g,但比电容确高达136.7F/g,能量密度高达58.1Wh/kg。
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第S2期327-330,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 超级电容器研发及产业化项目(财建[2010]305号 工信部财[2010]301号) 千法级超级电容器的研制与开发项目(09ZCKFGX02400)
关键词 电化学工程 超级电容器 纳米门炭 电化学活化 能量密度 electrochemical engineering ultracapacitor nanogate carbon electrochemical activation energy density
  • 相关文献

参考文献8

  • 1时志强,郭春雨,易炜,刘利,王成扬.新型微晶炭与商品活性炭的结构与电容性能[J].电源技术,2009,33(5):363-367. 被引量:6
  • 2朱春野,曹高萍.纳米门炭及纳米门电容器[J].新型炭材料,2005,20(4):380-381. 被引量:17
  • 3刘兴江,陈梅,胡树清,汪继强.电化学混合电容器的研究进展[J].电源技术,2005,29(12):787-790. 被引量:9
  • 4Takeuchi M,Koike K,Maruyama Tet al.Electro-chemical intercalation of tetraethylammonium tet-rafluoroborate into KOH treated carbon consistingof multi-graphene sheets for an electric double layercapacitor. Electrochemistry . 1998
  • 5Lee S,Mitani S,Yoon Set al.Preparation of spheri-cal activated carbon with high electric double-layercapacitance. Carbon . 2004
  • 6MOCHIDA I,LEE S I,MITANI S,et al.Performance,working mechanism and future development of active carbons in super capa-citor. TANSO . 2003
  • 7Okamura M,Nakamura H. Proceedings of the13th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices . 2003
  • 8Barbieri O,Hahn M,Herzog A,et al.Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon . 2005

二级参考文献15

  • 1朱春野,曹高萍.纳米门炭及纳米门电容器[J].新型炭材料,2005,20(4):380-381. 被引量:17
  • 2周鹏伟,李宝华,康飞宇,曾毓群.椰壳活性炭基超级电容器的研制与开发[J].新型炭材料,2006,21(2):125-131. 被引量:38
  • 3BURKE A. Ultracapacitors: Why, how, and where is the technology [J]. Journal of Power Sources, 2000, 91 (1): 37-50.
  • 4QU D Y, SHI H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74 (1): 99-107.
  • 5LOZANO-CASTELLO D, CAZORLA-AMOROS D, LINARESSOLANO A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon, 2003, 41 (9): 1765-1775.
  • 6BARBIERI O, HAHN M, HERZOG A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors [J].Carbon, 2005, 43 (6): 1303-1310.
  • 7MOCHIDA I, LEE S I, MITANI S, et al. Performance, working mechanism and future development of active carbons in super capacitor[J]. Tanso, 2003, 210: 250-257.
  • 8TAKEUCHI M, KOIKE K, MARUYAMA T, et al. Electrochemical intercalation of tetraethylammonium tetrafluoroborate into KOH treated carbon consisting of multi-graphene sheets for an electric double layer capacitor[J]. Denki Kagaku, 1998, 66 (12) : 1311-1317.
  • 9LEE S I, MITANI S, YOON S H, et al. Preparation of spherical activated carbon with high electric double-layer capacitance [J]. Carbon, 2004, 42 (11): 2332-2334.
  • 10LEE S I, SAITO K, KANEHASHI K, et al. nB NMR study of the BF4^-anion in activated carbons at various stages of charge of EDLCs in organic electrolyte[J].Carbon, 2006, 44 02): 2578-2586.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部