期刊文献+

膜萃取处理高盐水杨酸废水传质特性研究 被引量:5

MASS TRANSFER CHARACTERIZATION OF MEMBRANE EXTRACTION OF HIGH-SALINITY SALICYLIC ACID WASTEWATER
原文传递
导出
摘要 采用膜萃取分离法处理高盐水杨酸废水。讨论了料液流量F、反应温度T、萃取液pH值、料液进水浓度Cf,in等因素对膜传质性能和水杨酸去除效果的影响。结果表明:总传质系数Kov受料液流量和反应温度两因素影响较大;在Cf,in=854.2±19.7 mg/L、F=3 L/d、T=323 K、萃取液侧pH=11.5±0.2、膜管长L=50 m的条件下,水杨酸去除率可达97%。 采用膜萃取分离法处理高盐水杨酸废水。讨论了料液流量F、反应温度T、萃取液pH值、料液进水浓度Cf,in等因素对膜传质性能和水杨酸去除效果的影响。结果表明:总传质系数Kov受料液流量和反应温度两因素影响较大;在Cf,in=854.2±19.7 mg/L、F=3 L/d、T=323 K、萃取液侧pH=11.5±0.2、膜管长L=50 m的条件下,水杨酸去除率可达97%。
出处 《环境工程》 CAS CSCD 北大核心 2011年第S1期132-134,329,共4页 Environmental Engineering
关键词 均质硅橡胶膜 膜萃取 总传质系数 水杨酸 non-porous silicone rubber membrane membrane extraction overall mass transfer coefficient salicylic acid
  • 相关文献

参考文献8

  • 1周集体,吴丽丽,张爱丽,杨桦.膜萃取处理高浓度苯胺废水膜传质动力学[J].大连理工大学学报,2010,50(1):20-25. 被引量:8
  • 2肖敏,周集体,张爱丽,殷国监.均质硅橡胶膜萃取含酚水溶液传质特性研究[J].大连理工大学学报,2009,49(3):333-339. 被引量:4
  • 3王学江,张全兴,赵建夫,夏四清,陈玲.水杨酸生产废水的治理与资源化[J].环境污染治理技术与设备,2005,6(1):62-67. 被引量:12
  • 4于振云.水杨酸的合成与应用进展[J].化工中间体,2003(21):27-32. 被引量:14
  • 5Ferreira F C,Peeva L,Boam A.Pilot scale application of theMembrane Aromatic Recovery System(MARS)for recovery ofphenol from resin production condensates. Journal of Mem-brane Science . 2005
  • 6Cocchini U,Nicolella C,Livingston A G.Effect of ionic strength on extraction of hydrophobic organics through silicone rubbermembranes. Journal of Membrane Science . 1999
  • 7Livingston A G.A novel membrane bioreactor for detoxifying industrial wastewater: I.Biodegradation of Phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering . 1993
  • 8Shejiao Han,Frederico Castelo Ferreira,Andrew Livingston.Membrane aromatic recovery system(MARS)-a new membrane process for the recovery of phenols from waste waters. Journal of Membrane Science . 2001

二级参考文献24

  • 1曹广宏.水杨酸的合成及其应用[J].辽宁化工,1994,23(3):33-41. 被引量:11
  • 2KUJAWSKI W, WARSZAWSKI A, RATAJCZAK W, et al. Removal of phenol from wastewater by different separation techniques [J]. Desalination, 2004, 163(1-3): 287-296
  • 3KIANI A, BHAVE R P, SIRKAR K K. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane [J]. Journal of Membrane Science, 1984, 20(2) : 125-145
  • 4KIM B M. Membrane-based solvent extraction for selective removal and recovery of metals [J]. Journal of Membrane Science, 1984, 21(1) :5-19
  • 5BROOKES P R, LIVINGSTON A G. Aqueous-aqueous extraction of organic pollutants through tubular silicone rubber membranes [J]. Journal of Membrane Science, 1995, 104(1-2): 119-137
  • 6DOIG S D, BOAM A T, LIVINGSTON A G, et al. Mass transfer of hydrophobic solutes in solvent swollen silicone rubber membranes[J]. Journal of Membrane Science, 1999, 154(1):127-140
  • 7HANS J, FERREIRA F C, LIVINGSTON A. Membrane aromatic recovery system (MARS) - a new membrane process for the recovery of phenols from wastewaters [J]. Journal of Membrane Science, 2001, 188(2) :219-233
  • 8FERREIRA F C, PEEVA L, BOAM A, et al. Pilot scale application of the Membrane Aromatic Recovery System (MARS) for recovery of phenol from resin production condensatcs [J]. Journal of Membrane Science, 2005, 257(1-2) :120-133
  • 9FERREIRA F C, PEEVA L G, LIVINGSTON A G. Mass transfer enhancement in the Membrane Aromatic Recovery System (MARS) :theoretical analysis [J]. Chemical Engineering Science, 2005, 60(1) : 151-166
  • 10DOIG S D, BOAM A T, LIVINGSTON A G, et al. Mass transfer of hydrophobie solutes in solvent swollen silicone rubber membranes [J]. Journal of Membrane Seienee, 1999, 154(1) : 127-140.

共引文献33

同被引文献31

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部