摘要
为了能够根据当前场景内容在线提取优势推理特征,使得提取后的优势特征集能更好地区分当前场景的地形类别,满足农业机器人室外导航环境要求,提出一种基于迭代式RELIEF算法的农业机器人地形标记方法。该方法通过超像素分割产生训练样本,由迭代式RELIEF算法输出一个特征权重向量,向量每个元素的值代表其所对应的候选特征对地形标记的影响程度,通过对特征权重设定阈值来剔除大量无关特征。地形标记试验结果表明,该方法不但能够将地面标记准确率与障碍标记召回率分别提高1%与0.8%,还能将SVM地形分类器的计算复杂度降低40%左右。在导航试验中,该方法能够使农业机器人的导航效率提高15%左右。
为了能够根据当前场景内容在线提取优势推理特征,使得提取后的优势特征集能更好地区分当前场景的地形类别,满足农业机器人室外导航环境要求,提出一种基于迭代式RELIEF算法的农业机器人地形标记方法。该方法通过超像素分割产生训练样本,由迭代式RELIEF算法输出一个特征权重向量,向量每个元素的值代表其所对应的候选特征对地形标记的影响程度,通过对特征权重设定阈值来剔除大量无关特征。地形标记试验结果表明,该方法不但能够将地面标记准确率与障碍标记召回率分别提高1%与0.8%,还能将SVM地形分类器的计算复杂度降低40%左右。在导航试验中,该方法能够使农业机器人的导航效率提高15%左右。
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2011年第S1期128-132,127,共6页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家自然科学基金资助项目(61175038
31101461)
国家高技术研究发展计划(863计划)资助项目(2010AA101403)
机械系统与振动国家重点实验室开放基金资助项目(MSVMS201103)