期刊文献+

BCC金属物理型动态本构关系及在钽中的应用 被引量:4

A Physically-based Constitutive Model for BCC Metals and Its Application in Tantalum
下载PDF
导出
摘要 构建了一种新的、基于塑性变形物理机制的BCC金属动态本构关系,然后将其应用于军用材料钽,通过采用新的约束条件下的多变量非线性规划方法,结合有关流应力实验数据确定出了多晶钽的本构模型。计算结果表明,该模型与实验数据吻合较好,而与Z-A本构模型相比其准确性得到提高,与NN-I本构模型相比预测能力接近,但实用性更强。另外,验证可知该模型的适用条件可以有效外推至很宽的温度及应变率范围。 构建了一种新的、基于塑性变形物理机制的BCC金属动态本构关系,然后将其应用于军用材料钽,通过采用新的约束条件下的多变量非线性规划方法,结合有关流应力实验数据确定出了多晶钽的本构模型。计算结果表明,该模型与实验数据吻合较好,而与Z-A本构模型相比其准确性得到提高,与NN-I本构模型相比预测能力接近,但实用性更强。另外,验证可知该模型的适用条件可以有效外推至很宽的温度及应变率范围。
出处 《兵工学报》 EI CAS CSCD 北大核心 2010年第S1期149-153,共5页 Acta Armamentarii
关键词 BCC金属 本构 细观塑性变形 BCC metal constitutive model micromechanics of plasticity tantalum
  • 相关文献

参考文献10

  • 1潘志亮,李玉龙.纳米晶钽在单向拉伸载荷下的分子动力学模拟[J].力学学报,2006,38(6):831-834. 被引量:1
  • 2郭扬波,唐志平,程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报,2002,23(3):249-256. 被引量:13
  • 3彭建祥,李大红.温度与应变率对钽流动应力的影响[J].高压物理学报,2001,15(2):146-150. 被引量:7
  • 4程经毅,周光泉.基于物理变量的热粘塑性本构模型[J].爆炸与冲击,1996,16(3):218-231. 被引量:4
  • 5Zerilli FJ,Armstrong RW.Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics . 1987
  • 6Follansbee P S,Kocks U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica . 1988
  • 7Johnston WJ,Gilman JJ.Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals. Journal of Applied Physics . 1959
  • 8Voyiadjis G Z,Abed F H.Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mechanics of Materials . 2005
  • 9Nemat-Nasser S,,Isaacs J B.Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta-W alloys. Acta Materialia . 1997
  • 10Orowan,E.Problems of plastic gliding. Proc. Phys. Soc. (London) . 1940

二级参考文献24

  • 1[1]Cheng JingYi, Nemat-Nasser S. A model for experimentally-observed high-strain-rate dynamic strain aging in titanium. Acta Mater, 2000, 48:3131~3144
  • 2[2]Mulford R A, Kocks U F. New observations on the mechanisms of dynamic strain aging and of Jerky flow. Acta Metallurgica, 1979, 27:1125~1134
  • 3[3]Beukel A Van Den, Kocks U F. The strain dependence of static and dynamic strain aging. Acta Metallurgica, 1982, 30:1027~1034
  • 4[4]Zerilli Frank J, Armstrong Ronald W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys, 1987, 61(5):1816~1825
  • 5[5]Zerilli Frank J, Armstrong Ronald W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. J Appl Phys, 1990, 68(4):1580~1591
  • 6[6]Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Mater, 1997, 45:907~919
  • 7[7]Hoge K G, Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum. Journal of Materials Science, 1977, 12:1666~1672
  • 8[8]Kocks U F. Kinetics of solution hardening. Metallurgical Transactions A,1985, 16A:2109~2129
  • 9[9]McCormick P G. A model for the Portevin-Le chatelier effect in substitutional alloys. Acta Metallurgica, 1972, 20:351~354
  • 10[10]Ke Ting-Sui. Internal friction and precipitation from the solid solution of N in tantalum. Physical Review, 1948, 74:914~916.

共引文献21

同被引文献50

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部