摘要
The thermal evolution of source rocks in the Paleozoic stratigraphic sequences has been an outstanding problem for petroleum exploration in the Tarim Basin, as the thermal history of the Paleozoic could not be reconstructed objectively due to the lack of effective thermal indicators in the early Paleozoic carbonate successions. The (U-Th)/He thermochronometry of apatite and zircon has recently been used as an effective tool to study the structural uplift and thermal history of sedimentary basins. The Paleozoic tectonothermal histories of two typical wells in the Tarim Basin were modeled using the thermal indicators of (U-Th)/He, apatite fission track (AFT), and vitrinite reflectance (Ro) data in this paper. The Paleozoic strata in the two wells were shallow due to persistent uplift and significant erosion during the Hercynian tectonic events (from Devonian to Triassic). Therefore, the paleothermal indicators in the Paleozoic strata may retain the original thermal evolution and can be used to re- construct the Paleozoic thermal history of the Tarim Basin. The apatite and zircon helium ages from core and cuttings samples were analyzed and the Paleozoic thermal histories of wells KQ1 and T1 were modeled by combining helium ages, AFT, and equivalence vitrinite reflectance (VRo) data. The modeling results show that the geothermal gradient evolution is different in the Kongquehe Slop and Bachu Uplift of Tarim Basin during the Paleozoic. The thermal gradient in Well T1 on the Bachu Up- lift was only 28–30°C/km in Cambrian, and it increased to 30–33°C/km in Ordovician and 31–34°C/km during the Silurian and Devonian. The thermal gradient of Ordovician in Well KQ1 on the Kongquehe Slope was 35°C/km and decreased to 32–35°C/km during the Silurian and Devonian. Therefore, the combined use of (U-Th)/He ages and other thermal indicators appears to be useful in reconstructing the basin thermal history and provides new insight into the understanding of the early Paleozoic thermal history of the Tarim Basin.
The thermal evolution of source rocks in the Paleozoic stratigraphic sequences has been an outstanding problem for petroleum exploration in the Tarim Basin, as the thermal history of the Paleozoic could not be reconstructed objectively due to the lack of effective thermal indicators in the early Paleozoic carbonate successions. The (U-Th)/He thermochronometry of apatite and zircon has recently been used as an effective tool to study the structural uplift and thermal history of sedimentary basins. The Paleozoic tectonothermal histories of two typical wells in the Tarim Basin were modeled using the thermal indicators of (U-Th)/He, apatite fission track (AFT), and vitrinite reflectance (Ro) data in this paper. The Paleozoic strata in the two wells were shallow due to persistent uplift and significant erosion during the Hercynian tectonic events (from Devonian to Triassic). Therefore, the paleothermal indicators in the Paleozoic strata may retain the original thermal evolution and can be used to re- construct the Paleozoic thermal history of the Tarim Basin. The apatite and zircon helium ages from core and cuttings samples were analyzed and the Paleozoic thermal histories of wells KQ1 and T1 were modeled by combining helium ages, AFT, and equivalence vitrinite reflectance (VRo) data. The modeling results show that the geothermal gradient evolution is different in the Kongquehe Slop and Bachu Uplift of Tarim Basin during the Paleozoic. The thermal gradient in Well T1 on the Bachu Up- lift was only 28–30°C/km in Cambrian, and it increased to 30–33°C/km in Ordovician and 31–34°C/km during the Silurian and Devonian. The thermal gradient of Ordovician in Well KQ1 on the Kongquehe Slope was 35°C/km and decreased to 32–35°C/km during the Silurian and Devonian. Therefore, the combined use of (U-Th)/He ages and other thermal indicators appears to be useful in reconstructing the basin thermal history and provides new insight into the understanding of the early Paleozoic thermal history of the Tarim Basin.
基金
supported by Key Project of Ministry of Education of China (Grant No. 308005)
National Basic Research Program of China (Grant No. 2005CB422102)
State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPJC2008-01)