摘要
With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator.
With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator.
基金
supported by the NationalNatural Science Foundation of China (Grant No.10873007)
supported by the Science Foundation of Jiangxi Education Bureau (Grant No.GJJ09072)
the Program for Innovative Research Team of Nanchang University