期刊文献+

Optimized third-order force-gradient symplectic algorithms 被引量:3

Optimized third-order force-gradient symplectic algorithms
原文传递
导出
摘要 With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator. With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第9期1600-1609,共10页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the NationalNatural Science Foundation of China (Grant No.10873007) supported by the Science Foundation of Jiangxi Education Bureau (Grant No.GJJ09072) the Program for Innovative Research Team of Nanchang University
关键词 SYMPLECTIC INTEGRATORS SYMPLECTIC scheme-shooting METHOD celestial mechanics time-independent Schrdinger equation energy eigenvalues numerical stability BISECTION METHOD topological structure symplectic integrators symplectic scheme-shooting method celestial mechanics time-independent Schrdinger equation energy eigenvalues numerical stability bisection method topological structure
  • 相关文献

参考文献19

  • 1Jia Xu Xin Wu.Several fourth-order force gradient symplectic algorithms[J].Research in Astronomy and Astrophysics,2010,10(2):173-188. 被引量:3
  • 2Shuang-Ying Zhong,Xin Wu.A velocity scaling method with least-squares correction of several constraints[J]. Astrophysics and Space Science . 2009 (1)
  • 3Siu A. Chin,C. R. Chen.Forward Symplectic Integrators for Solving Gravitational Few-Body Problems[J]. Celestial Mechanics and Dynamical Astronomy . 2005 (3-4)
  • 4Seppo Mikkola.Practical Symplectic Methods with Time Transformation for the Few-Body Problem[J]. Celestial Mechanics and Dynamical Astronomy . 1997 (2)
  • 5Yi-Sui Sun,Ji-Lin Zhou.Global applicability of the symplectic integrator method of hamiltonian systems[J]. Celestial Mechanics & Dynamical Astronomy . 1996 (3)
  • 6Haruo Yoshida.Recent progress in the theory and application of symplectic integrators[J]. Celestial Mechanics and Dynamical Astronomy . 1993 (1-2)
  • 7Chin S A.Symplectic integrators from composite operator factorizations. Physics Letters A . 1997
  • 8Chin S A.Physics of symplectic integrators:Perihelion advances and symplectic corrector algorithms. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2007
  • 9Casas F,Murua A.An e-cient algorithm for computing the BakerCampbell-Hausdor-series and some of its applications. J Mathemat Phys . 2009
  • 10Liu F Y,Wu X,Lu B K.On the numerical stability of some symplectic integrators. Chin Astorn Astrophys . 2007

二级参考文献35

  • 1Blanes, S., Casas, F., & Murua, A. 2008, arXiv: 0812.0377.
  • 2Candy, J., & Rozmus, W. 1991, J. Comp. Phys., 92, 230.
  • 3Casas, F., & Murua, A. 2009, J. Math. Phys., 50, 033513.
  • 4Chambers, J. E., & Murison, M. A. 2000,AJ, 119, 425.
  • 5Chin, S. A. 1997, Phys. Lett. A, 226, 344.
  • 6Chin, S. A. 2004, Phys. Rev. E, 69, 046118.
  • 7Chin, S. A. 2006, Phys. Rev. E, 73, 026705.
  • 8Chin, S. A. 2007, Phys. Rev. E, 75, 036701.
  • 9Chin, S. A., & Chen, C. R. 2001, J. Chem. Phys., 114, 7338.
  • 10Chin, S. A., & Chen, C. R. 2005, Celest. Mech. Dyn. Astron., 91,301.

共引文献2

同被引文献36

  • 1FAN HongYi1,YUAN HongChun1 & JIANG NianQuan2 1Department of Physics,Shanghai Jiao Tong University,Shanghai 200030,China,2College of Physics and Electric Information,Wenzhou University,Wenzhou 325035,China.Deriving new operator identities by alternately using normally,antinormally,and Weyl ordered integration technique[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1626-1630. 被引量:14
  • 2CHEN Bing,SONG Zhi.Two-band model as a quantum data bus for quantum state transfer[J].Science China(Physics,Mechanics & Astronomy),2010,53(7):1266-1270. 被引量:3
  • 3刘福窑,伍歆,陆本魁.几类辛方法的数值稳定性研究[J].天文学报,2006,47(4):418-431. 被引量:3
  • 4Hairer E, Lubich C, Wanner G. Geometric Numerical Integration :Structure-Preserving Algorithms for Or- dinary Differential Equations [M]. Berlin: Springer- Verlag, 2006.
  • 5Sanz-Serna J M,Calvo M P. Numerical Hamiltonian Problems[M]. London.. Chapman and Ha11,1994.
  • 6Forest E, Ruth R D. Fourth-order symplectic integra-tion[J]. Physica D,1990,43(1) : 105-117.
  • 7Candy J, Rozmus W. A symplectic integration algo- rithm for separable Hamiltonian functions[J]. Journal of Computational Physics, 1991,92:230-256.
  • 8Burkhardt P. Explicit, Multi-map Symplectic Inte- grator for Three-body Classical Trajectory Studies in H yperspherical Coordinates[D]. Urbana-Champaign.. University of Illinois at Urban-Champaign, 2004 : 31- 60.
  • 9Li Xiaofan, Li Yiqiong, Zhang Meigen, et al. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method[J]. Bulletin of the Seismological Society of America, 2011, 101 (4) :1701-1718.
  • 10Ruth R D. A canonical integration technique [J]. IEEE Transactions on Nuclear Science, 1983, NS-30 (4) :2669-2671.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部