期刊文献+

Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space 被引量:6

Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space
原文传递
导出
摘要 The method of nonholonomic mapping is utilized to construct a Riemann-Cartan space embedded into a known Riemann-Cartan space,which includes two special cases that a Weitzenbck space and a Riemann-Cartan space are respectively embedded into a Euclidean space and a Riemann space.By means of this mapping theory,the nonholonomic corresponding relation between the autoparallels of two Riemman-Cartan spaces is investigated.In particular,an autoparallel in a Riemann-Cartan space can be mapped into a geodesic line in a Riemann space and an autoparallel in Weitzenbck space be mapped into a geodesic line in Euclidean space.Based on the Lagrange-d'Alembert principle,the equations of motion for dynamical systems in Riemman-Cartan space should be autoparallel equations of the space.As applications,the problem of autoparallel motion of spinless particles,Chaplygin's nonholonomic systems and a rigid body rotating with a fixed point are investigated in space with torsion. The method of nonholonomic mapping is utilized to construct a Riemann-Cartan space embedded into a known Riemann-Cartan space,which includes two special cases that a Weitzenbck space and a Riemann-Cartan space are respectively embedded into a Euclidean space and a Riemann space.By means of this mapping theory,the nonholonomic corresponding relation between the autoparallels of two Riemman-Cartan spaces is investigated.In particular,an autoparallel in a Riemann-Cartan space can be mapped into a geodesic line in a Riemann space and an autoparallel in Weitzenbck space be mapped into a geodesic line in Euclidean space.Based on the Lagrange-d’Alembert principle,the equations of motion for dynamical systems in Riemman-Cartan space should be autoparallel equations of the space.As applications,the problem of autoparallel motion of spinless particles,Chaplygin’s nonholonomic systems and a rigid body rotating with a fixed point are investigated in space with torsion.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第9期1707-1715,共9页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos 10932002, 10872084 and 10472040) the Outstanding Young Talents Training Fund of Liaoning Province of China (Grant No 3040005) the Research Program of Higher Education of Liaoning Province of China (Grant No 2008S098) the Program Supporting Elitists of Higher Education of Liaoning Province of China (Grant No 2008RC20) the Program of Constructing Liaoning Provincial Key Laboratory of China (Grant No 2008403009)
关键词 NONHOLONOMIC MAPPING Riemann-Cartan SPACE connection torsion autoparallel nonholonomic mapping Riemann-Cartan space connection torsion autoparallel
  • 相关文献

参考文献38

  • 1王勇,郭永新,吕群松,刘畅.非完整映射理论与刚体定点转动的几何描述[J].物理学报,2009,58(8):5142-5149. 被引量:8
  • 2GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 3郭永新,魏泽生.有挠时空中自旋粒子的进动[J].辽宁师范大学学报(自然科学版),1991,14(4):295-301. 被引量:3
  • 4H. Kleinert,A. Pelster.Letter: Autoparallels From a New Action Principle[J]. General Relativity and Gravitation . 1999 (9)
  • 5Hehl F W,McCrea J D,Mielke E W.Metric-affine gauge theory of gravity:Field equations,Noether identities,world spinors,and breaking of dilation invariance. Physics Reports . 1995
  • 6Trautman A.Einstein-Cartan theory. . 2008
  • 7Bilby B A,Bullough R,Smith E.Continuous distributions of dislocations:A new application of methods of non-Riemannian geometry. Proceedings of the Royal Society Series A Mathematical Physical and Engineering Sciences . 1955
  • 8Sciama D W.On the analogy between charge and spin in general relativity. Recent Developments in General Relativity . 1962
  • 9Cacciatori S L,Caldarelli M M,Giacomini A,et al.Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity. Journal of Applied Geophysics . 2006
  • 10Camacho A,Maciás A.Space-time torsion contribution to quantum interference phases. Physics Letters B . 2005

二级参考文献24

共引文献10

同被引文献38

  • 1GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 2郭永新,罗绍凯,梅凤翔.非完整约束系统几何动力学研究进展:Lagrange理论及其它[J].力学进展,2004,34(4):477-492. 被引量:27
  • 3王勇,郭永新.Riemann-Cartan空间中的d’Alembert-Lagrange原理[J].物理学报,2005,54(12):5517-5520. 被引量:12
  • 4Arnold V I,Kozlov V V,Neishtadt A I.Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Science . 1988
  • 5Sarlet W.The Helmholtz conditions revisited: A new approach to the inverse problem of Lagrangian dynamics. Journal of Physics A Mathematical and General . 1982
  • 6Henneaux M.On the inverse problem of the calculus of variations in field theory. Journal of Physics A Mathematical and General . 1984
  • 7Morando P,Vignolo S.A geometric apporach to constrained me- chanical systems, symmetries and inverse problems. Journal of Physics A Mathematical and General . 1998
  • 8Sarlet W,Thompson G,Prince G E.The inverse problem in the cal- culus of variations: The use of geometrical calculus in Douglas’’s analysis. Transactions of the American Mathematical Society . 2002
  • 9Guo Y X,Liu S X,Liu C, et al.Influence of nonholonomic con- straints on variations, symplectic structure and dynamics of me- chanical systems. Journal of Mathematical Physics . 2007
  • 10Cortés,J. Geometric, Control and Numerical Aspects of Nonholonomic Systems . 2002

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部