期刊文献+

Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI 被引量:17

Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI
原文传递
导出
摘要 Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between two explorers and two receiving telescopes can be obtained with a small error of several picoseconds. The differential phase delay, as the observable of the same-beam VLBI, gives the separation angular information of the two explorers in the celestial sphere. The two-dimensional relative position on the plane-of-sky can thus be precisely determined with an error of less than 1 m for a distance of 3.8×105 km far away from the earth, by using the differential phase delay obtained with the four Chinese VLBI stations. The relative position of a lunar rover on the lunar surface can be determined with an error of 10 m by using the differential phase delay data and the range data for the lander when the lunar topography near the rover and the lander can be determined with an error of 10 m. Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between two explorers and two receiving telescopes can be obtained with a small error of several picoseconds. The differential phase delay, as the observable of the same-beam VLBI, gives the separation angular information of the two explorers in the celestial sphere. The two-dimensional relative position on the plane-of-sky can thus be precisely determined with an error of less than 1 m for a distance of 3.8×105 km far away from the earth, by using the differential phase delay obtained with the four Chinese VLBI stations. The relative position of a lunar rover on the lunar surface can be determined with an error of 10 m by using the differential phase delay data and the range data for the lander when the lunar topography near the rover and the lander can be determined with an error of 10 m.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第3期571-578,共8页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the ‘100 Talents Project’ of Chinese Academy of Sciences, China
关键词 same-beam VLBI differential phase delay relative position DETERMINATION lunar rover same-beam VLBI differential phase delay relative position determination lunar rover
  • 相关文献

参考文献2

二级参考文献35

  • 1Grant Heiken, David Vaniman, Bevan M French.Lunar Sourcebook-A User's Guide to the Moon[M].Cambrdage: Cambridge University Press, 1991.121-474.
  • 2Lawrence D J, Feldman W C, Barraclough B L, et al. Global elemental maps of the Moon: The lunar prospector gamma-ray spectormater[J]. Science, 1998, 281(4): 1 984-1 988.
  • 3Paul G Lucey, Blewett D T. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images[J]. Journal of Geophysical Research, 2000, 105(8): 20 297-20 305.
  • 4Paul G Lucey, Blewett D T, Hawke B R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery[J]. Journal of Geophysical Research, 1998, 103:3 679-3 699.
  • 5Elphic R C, Lawrence D J, Feldman W C, et al. Lunar Fe and Ti abundance: Comparison of Lunar Prospector data[J]. Science, 1998,281(4): 1 993-1 996.
  • 6Lawrence D J, Feldman W C, Barraclough B L, et al. Thorium abundances on the lunar surface[J]. Journal of Geophysical Research, 2000, 105(8): 20 307-20 331.
  • 7Larry A. Haskin Gillis Seffrey J, Korotev Randy L, et al. The materials of the Lunar Procellaru-KREEP Terrane: A synthesis of data from geomorphological mapping, remote sensing, and sample analyses[J]. Journal of Geophysical Research, 2000,105(8): 20 403-
  • 8Mark A Wieczorek, Roger J Phillips. The ''Procellarum KREEP Terrane'': Implications for mare volcanism and lunar evolution[C]. Journal of Geophysical Research, 2000,105(8): 20 417- 20 430.
  • 9Head J W, Wilson L. Lunar mare volcanism: Stratigraphy, ruption conditions, and the evolution of secondary crusts[J]. Geochimia et Cosmochimica Acta, 1992,56:2 155-2 175.
  • 10中国科学院地球化学研究所编.月质学研究进展[M].北京: 科学出版社,1977.41-203.

共引文献185

同被引文献107

引证文献17

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部