期刊文献+

Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau 被引量:18

Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau
原文传递
导出
摘要 Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocene.According to spatial-temporal compensation,the present thermal state discrepancy of permafrost in different areas on the QTP may correspond with their degradation stages.On the QTP,permafrost in the high and middle mountains belongs to temperature rising stage,the permafrost thermal state is transiting from late rising temperature stage to zero geothermal gradient stage that is distributed in the middle-low-mountains.Permafrost that is in a zero gradient stage mainly appears in the high plateau and valley,whereas the transition from zero gradient stage to talic layers stage of permafrost is located in the vicinity of the lower limit of permafrost,and permafrost is disappearing from margin of perennially frozen ground.There are two modes of perennially frozen ground thawing,thawing from top to bottom and thawing from bottom to top respectively.During the temperature rising stage,when the heat flux in the perennially frozen soil layer is less than that in the unfrozen soil underlying frozen soil layer,the geothermal flux is partly used to thaw the base of permafrost,and permafrost thaws from bottom to top.With the decrease of thermal gradient in the perennially frozen ground,the heat that is used to thaw permafrost base increases,and geothermal heat will be entirely consumed to thaw the base of permafrost until the temperature gradient reaches zero thermal gradient state.On the other hand,the disappearance of permafrost may be delayed by "thermal offset" and "seasonal offset" effects in the upper of permafrost layer.When ground surface temperature rises to the level that can counteract the thermal offset effect,heat accumulation in the active layer would start,and the thickness of the active layer increases until a talic layer to appear.This process can be intensified by the "seasonal anti-offset effect". Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocene.According to spatial-temporal compensation,the present thermal state discrepancy of permafrost in different areas on the QTP may correspond with their degradation stages.On the QTP,permafrost in the high and middle mountains belongs to temperature rising stage,the permafrost thermal state is transiting from late rising temperature stage to zero geothermal gradient stage that is distributed in the middle-low-mountains.Permafrost that is in a zero gradient stage mainly appears in the high plateau and valley,whereas the transition from zero gradient stage to talic layers stage of permafrost is located in the vicinity of the lower limit of permafrost,and permafrost is disappearing from margin of perennially frozen ground.There are two modes of perennially frozen ground thawing,thawing from top to bottom and thawing from bottom to top respectively.During the temperature rising stage,when the heat flux in the perennially frozen soil layer is less than that in the unfrozen soil underlying frozen soil layer,the geothermal flux is partly used to thaw the base of permafrost,and permafrost thaws from bottom to top.With the decrease of thermal gradient in the perennially frozen ground,the heat that is used to thaw permafrost base increases,and geothermal heat will be entirely consumed to thaw the base of permafrost until the temperature gradient reaches zero thermal gradient state.On the other hand,the disappearance of permafrost may be delayed by "thermal offset" and "seasonal offset" effects in the upper of permafrost layer.When ground surface temperature rises to the level that can counteract the thermal offset effect,heat accumulation in the active layer would start,and the thickness of the active layer increases until a talic layer to appear.This process can be intensified by the "seasonal anti-offset effect".
出处 《Science China Earth Sciences》 SCIE EI CAS 2010年第1期150-158,共9页 中国科学(地球科学英文版)
基金 supported by National Natural Science Foundation of China (Grant No.40871040) CAS Action Plan for the Development of Western China (Grant No.KZCX2-XB2-10) Research Projectof State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE-ZQ-06)
关键词 Qinghai-Tibet PLATEAU PERMAFROST DEGRADATION process DEGRADATION STAGE DEGRADATION mode Qinghai-Tibet Plateau permafrost degradation process degradation stage degradation mode
  • 相关文献

参考文献9

二级参考文献44

共引文献364

同被引文献199

引证文献18

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部