期刊文献+

Total coloring of embedded graphs of maximum degree at least ten 被引量:3

Total coloring of embedded graphs of maximum degree at least ten
原文传递
导出
摘要 A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ〃(G) is the smallest integer k such that G has a total k-coloring.In this paper,it is proved that the total chromatic number of any graph G embedded in a surface Σ of Euler characteristic χ(Σ)≥0 is Δ(G) + 1 if Δ(G)≥10,where Δ(G) denotes the maximum degree of G. A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ〃(G) is the smallest integer k such that G has a total k-coloring.In this paper,it is proved that the total chromatic number of any graph G embedded in a surface Σ of Euler characteristic χ(Σ)≥0 is Δ(G) + 1 if Δ(G)≥10,where Δ(G) denotes the maximum degree of G.
出处 《Science China Mathematics》 SCIE 2010年第8期2127-2133,共7页 中国科学:数学(英文版)
基金 supported by the Research Foundation for Doctor Programme (Grant No.200804220001) National Natural Science Foundation of China (Grant Nos.10871119,10971121,10901097)
关键词 surface EULER characteristic TOTAL COLORING TOTAL CHROMATIC number surface Euler characteristic total coloring total chromatic number
  • 相关文献

参考文献19

  • 1M. Rosenfeld.On the total coloring of certain graphs[J]. Israel Journal of Mathematics . 1971 (3)
  • 2Borodin O V,,Kostochka A V,Woodall D R.Total colourings of planar graphs with large girth. European Journal of Combinatorics . 1998
  • 3Wang P,Wu J.A note on total colorings of planar graphs without 4-cycles. Discuss Math Graph Theory . 2004
  • 4Wu J,Wang P.List-edge and list-total colorings of graphs embedded on hyperbolic surfaces. Discrete Mathematics . 2008
  • 5Zhao Y.On the total coloring of graphs embeddable in surfaces. Journal of the London Mathematical Society . 1999
  • 6Behzad M.Graphs and their chromatic numbers. . 1965
  • 7O. V. Borodin,A. V. Kostochka,D. R. Woodll.Total colorings of planar graphs with large maximum degree. . 1997
  • 8Kostochka A.V.Upper bounds of chromatic functions of graphs. . 1978
  • 9Kostochka A V.The total chromatic number of any multigraph with maximum degree five is at most seven. Discrete Mathematics . 1996
  • 10SANCHEZ-ARROYO A.Determining the total coloring number is NP-hard. Discrete Mathematics . 1989

同被引文献11

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部