期刊文献+

A Tauberian theorem for l-adic sheaves on A^1

A Tauberian theorem for l-adic sheaves on A^1
原文传递
导出
摘要 Let K ∈ L1(R) and let f ∈ L∞(R) be two functions on R.The convolution(Kf)(x) =∫R K(x-y)f(y)dy can be considered as an average of f with weight defined by K.Wiener's Tauberian theorem says that under suitable conditions,if lim x→∞(K f)(x) = lim x→∞(K A)(x) for some constant A,then lim x→∞ f(x) = A.We prove the following-adic analogue of this theorem:Suppose K,F,G are perverse-adic sheaves on the affine line A over an algebraically closed field of characteristic p(p=l).Under suitable conditions,if(K F)|η∞≌(K G)|η∞,then F|η∞≌ G|η∞,where η∞ is the spectrum of the local field of A at ∞. Let K ∈ L1(R) and let f ∈ L∞(R) be two functions on R.The convolution(Kf)(x) =∫R K(x-y)f(y)dy can be considered as an average of f with weight defined by K.Wiener’s Tauberian theorem says that under suitable conditions,if lim x→∞(K f)(x) = lim x→∞(K A)(x) for some constant A,then lim x→∞ f(x) = A.We prove the following-adic analogue of this theorem:Suppose K,F,G are perverse-adic sheaves on the affine line A over an algebraically closed field of characteristic p(p=l).Under suitable conditions,if(K F)|η∞≌(K G)|η∞,then F|η∞≌ G|η∞,where η∞ is the spectrum of the local field of A at ∞.
作者 Fu Lei
机构地区 Nankai Univ Nankai Univ
出处 《Science China Mathematics》 SCIE 2010年第9期2207-2214,共8页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10525107)
关键词 Tauberian THEOREM l-adic FOURIER TRANSFORMATION LOCAL FOURIER TRANSFORMATION Tauberian theorem l-adic Fourier transformation local Fourier transformation
  • 相关文献

参考文献2

  • 1G. Laumon. Transformation De Fourier Constantes D’équations Fonctionnelles Et Conjecture De Weil[J] 1987,Publications Mathématiques de L’Institut des Hautes Scientifiques(1):131~210
  • 2Pierre Deligne. La Conjecture de Weil. II[J] 1980,Publications Mathématiques de L’Institut des Hautes Scientifiques(1):137~252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部