期刊文献+

On the 3-rank of tame kernels of certain pure cubic number fields 被引量:2

On the 3-rank of tame kernels of certain pure cubic number fields
原文传递
导出
摘要 In this paper,we present some explicit formulas for the 3-rank of the tame kernels of certain pure cubic number fields,and give the density results concerning the 3-rank of the tame kernels.Numerical examples are given in Tables 1 and 2. In this paper,we present some explicit formulas for the 3-rank of the tame kernels of certain pure cubic number fields,and give the density results concerning the 3-rank of the tame kernels.Numerical examples are given in Tables 1 and 2.
出处 《Science China Mathematics》 SCIE 2010年第9期2381-2394,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10871088) Speialized Research Fund for the Doctoral Program of Higher Education (Grant No.200802840003) the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708044)
关键词 the 3-rank of the TAME KERNELS PURE CUBIC fields density the 3-rank of the tame kernels pure cubic fields density
  • 相关文献

参考文献1

二级参考文献10

  • 1Browkin, J.: Tame kernels of cubic cyclic fields. Math. Comp., 74, 967-999 (2005).
  • 2Qin, H. R., Zhou, H. Y.: The 3-Sylow subgroup of the tame kernel of real number fields. J. Pure App. Algebra, 209, 245-253 (2007).
  • 3Feng, K.: Algebraic Number Theory (in Chinese), Science Press, Beijing, 2000.
  • 4Tate, J.: Relations between K2 and Galois cohomology. Invent. Math., 36, 257-274 (1976).
  • 5Keune, F.: On the structure of the K2 of the ring of integers in a number field. K-Theory, 2, 625-645 (1989).
  • 6Iimura, K.: On 3-class groups of non-Galois cubic fields. Acta Arith., 35, 395-402 (1979).
  • 7Gerth, F.: On 3-class groups of pure cubic fields. J. Reine Angew. Math., 278-279, 52-62 (1975).
  • 8Browkin, J.: On the p-rank of the tame kernel of algebraic number fields. J. Reine Angew. Math., 432, 135-149 (1992).
  • 9Barrucand, P., Cohn, H.: Remarks on principal factors in a relative cubic field. J. Number Theory, 3, 226-239 (1971).
  • 10Washington, L. C.: Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

共引文献1

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部