期刊文献+

Inhomogenous quantum codes (Ⅰ):additive case 被引量:4

Inhomogenous quantum codes (Ⅰ):additive case
原文传递
导出
摘要 In this paper,the quantum error-correcting codes are generalized to the inhomogenous quantumstate space Cq1 Cq2 ··· Cqn,where qi(1 i n) are arbitrary positive integers.By attaching an abelian group Ai of order qi to the space Cqi(1 i n),we present the stabilizer construction of such inhomogenous quantum codes,called additive quantum codes,in term of the character theory of the abelian group A = A1⊕A2⊕···⊕An.As usual case,such construction opens a way to get inhomogenous quantum codes from the classical mixed linear codes.We also present Singleton bound for inhomogenous additive quantum codes and show several quantum codes to meet such bound by using classical mixed algebraic-geometric codes. In this paper,the quantum error-correcting codes are generalized to the inhomogenous quantumstate space Cq1 Cq2 ··· Cqn,where qi(1 i n) are arbitrary positive integers.By attaching an abelian group Ai of order qi to the space Cqi(1 i n),we present the stabilizer construction of such inhomogenous quantum codes,called additive quantum codes,in term of the character theory of the abelian group A = A1⊕A2⊕···⊕An.As usual case,such construction opens a way to get inhomogenous quantum codes from the classical mixed linear codes.We also present Singleton bound for inhomogenous additive quantum codes and show several quantum codes to meet such bound by using classical mixed algebraic-geometric codes.
出处 《Science China Mathematics》 SCIE 2010年第9期2501-2510,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10990011)
关键词 quantum CODE mixed CODE CHARACTER finite ABELIAN group algebraic-geometric CODE STABILIZER quantum code mixed code character finite abelian group algebraic-geometric code stabilizer
  • 相关文献

参考文献12

  • 1Chau H F.Five quantum register error correction code for higher spin systems. Physical Review A Atomic Molecular and Optical Physics . 1997
  • 2Knill E.Non binary unitary error bases and quantum codes. .
  • 3Knill E.Group representations,error bases and quantum codes. .
  • 4Perkins S,Sakhnovich A L,Smith D H.On an upper bound for mixed error-correcting codes. IEEE Transactions on Information Theory . 2006
  • 5CALDERBANK A R,RAINS E M,SHOR P W,et al.Quantum Error Correction Via Codes Over GF(4). IEEE Transactions on Information Theory . 1998
  • 6Shor P W.Scheme for reducing decoherence in quantum computer memory. Physical Review A Atomic Molecular and Optical Physics . 1995
  • 7Steane A M.Multiple particle interference and quantum error correction. Proceedings of the Royal Society of London . 1996
  • 8H. F. Chau.Correcting quantum errors in higher spin systems. Physical Review A Atomic Molecular and Optical Physics . 1997
  • 9H. Stichtenoch.Algebraic Function Fields and Codes. . 1993
  • 10Ketkar Avanti,Klappenecker Andreas,Kumar Santosh,etal.Nonbinary stabilizer codes over finite fields. IEEETrans InformTheory . 2006

同被引文献8

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部