摘要
Photoinduced electron transfer (ET) between C60 and porphyrin (P) in a new polymer containing porphyrin, poly(p-phenyle nevinylene), and pendant fullerene units has been investigated by nanosecond transient absorption and phosphorescence spectroscopy. Compared to the physically doping material systems, binding porphyrin/C60 through chemical bonds in a polymer detains the formation of the triplet states of porphyrins and C60. The formation of intermediate charge transfer state (CSS) of P·+-C60·? was observed, which led to the delayed formation of triplet states of porphyrins and C60. The reduced opto-electronic properties, such as optical limiting performance, were also observed, which resulted from the delayed formation of triplet states. The results presented in this article are significant in understanding the complicated spectral characteristics of the triplet state and charge transfer of the porphyrin and C60 complexes, and are therefore related to the controllable performance of the new materials in applications.
Photoinduced electron transfer (ET) between C60 and porphyrin (P) in a new polymer containing porphyrin, poly(p-phenyle nevinylene), and pendant fullerene units has been investigated by nanosecond transient absorption and phosphorescence spectroscopy. Compared to the physically doping material systems, binding porphyrin/C60 through chemical bonds in a polymer detains the formation of the triplet states of porphyrins and C60. The formation of intermediate charge transfer state (CSS) of P·+-C60·? was observed, which led to the delayed formation of triplet states of porphyrins and C60. The reduced opto-electronic properties, such as optical limiting performance, were also observed, which resulted from the delayed formation of triplet states. The results presented in this article are significant in understanding the complicated spectral characteristics of the triplet state and charge transfer of the porphyrin and C60 complexes, and are therefore related to the controllable performance of the new materials in applications.
基金
supported by the National Natural Science Foundation of China, 973 Programs and Chinese Academy of Sciences