摘要
特征选择在模式分类中扮演了一个重要的角色。它的目标是尽可能多地将不相关特征排除在外,同时,得到区分度大的特征子集。那些信息量小的特征的存在,不仅使得学习算法表现不佳,而且会掩盖数据背后重要的本质信息。随着新兴技术的发展,在很多领域数据集变得越来越大,很多不相关特征通常会出现在这样的数据集中,使得传统的学习算法遇到了巨大的挑战,尤其在效率和推广性方面。于是,一种可以从数据集中消除冗余和非相关信息的算法变得十分必要。本文提出一种boosting策略的特征选择方法,利用基于核空间的距离评价函数,采用前向分步搜索方法,为核向量机(CVM)分类器选择特征子集。实验结果显示,这种方法和非boosting策略,以及其他评价方法相比,能给分类器带来更优的特征。
特征选择在模式分类中扮演了一个重要的角色。它的目标是尽可能多地将不相关特征排除在外,同时,得到区分度大的特征子集。那些信息量小的特征的存在,不仅使得学习算法表现不佳,而且会掩盖数据背后重要的本质信息。随着新兴技术的发展,在很多领域数据集变得越来越大,很多不相关特征通常会出现在这样的数据集中,使得传统的学习算法遇到了巨大的挑战,尤其在效率和推广性方面。于是,一种可以从数据集中消除冗余和非相关信息的算法变得十分必要。本文提出一种boosting策略的特征选择方法,利用基于核空间的距离评价函数,采用前向分步搜索方法,为核向量机(CVM)分类器选择特征子集。实验结果显示,这种方法和非boosting策略,以及其他评价方法相比,能给分类器带来更优的特征。
出处
《电子技术(上海)》
2010年第10期17-20,3,共5页
Electronic Technology