期刊文献+

无强波构型理论发展现状研究 被引量:4

Study Progress of Boomless Configuration Theory
下载PDF
导出
摘要 本文引入了一种由Busemann超声速双翼理论发展而来的无强激波构型,该构型可明显消弱超声速飞行时带来的波阻和声爆。文中分析了无强波构型的机理和气动特性,介绍了该构型理论研究和应用研究进展,并探讨了该构型在超声速飞行器设计应用中的关键性问题。该理论为未来低声爆超声速飞机的设计提供了一个全新的思路,是未来超声速/高超声速飞行器发展必要的技术基础。 本文引入了一种由Busemann超声速双翼理论发展而来的无强激波构型,该构型可明显消弱超声速飞行时带来的波阻和声爆。文中分析了无强波构型的机理和气动特性,介绍了该构型理论研究和应用研究进展,并探讨了该构型在超声速飞行器设计应用中的关键性问题。该理论为未来低声爆超声速飞机的设计提供了一个全新的思路,是未来超声速/高超声速飞行器发展必要的技术基础。
作者 郭润兆
出处 《航空工程进展》 2010年第4期341-346,共6页 Advances in Aeronautical Science and Engineering
关键词 无强波构型 Busemann双翼 波阻 声爆 气动特性 boomless configuration Busemann’s biplane wave drag sonic boom aerodynamic characteristic
  • 相关文献

参考文献8

  • 1杨智春,解江.自适应机翼技术的分类和实现途径[J].飞行力学,2008,26(5):1-4. 被引量:24
  • 2袁永康.消除音爆[J].国外科技动态,2002,0(3):29-31. 被引量:1
  • 3Daigo Maruyama,Kazuhiro Kusunose,Kisa Matsushima.Aerodynamic characteristics of a two-dimensional supersonic biplane, covering its take-off to cruise conditions[J]. Shock Waves . 2009 (6)
  • 4L. Liebenberg,E. A. Bunt.Wave drag coefficient of a model ‘Busemann biplane’ catamaran[J]. Experiments in Fluids . 1990 (6)
  • 5Kusunose.K.Anewconcept in the development boomless su-personic transport. First International Conference on Flow Dynamics . 2004
  • 6John D.Anderson.Fundamentals of aerodynamics. . 2001
  • 7K.Kusunose,K.Matsushi ma,Y.Gotoet al.Afundamen-tal studyfor the development of boomless supersonic transport aircraft. 44th AI AA Aerospace Sciences Meeting and Ex-hibit . 2006
  • 8W.F.Hilton,Ph.D.Li mitations of use of Buse-mann’s second-order supersonic aerofoil theory. A.R.C.Technical Report,R.&M.No.2524 . 1989

二级参考文献16

  • 1Rossi M, Austin F, Van Nostrand W. Active Rib Experiment for Shape Control of an Adaptive Wing [ A ]. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference [ C ]. Washington, D C, 1993:233-266.
  • 2Bein Th, Hanselka H, Breitbach E. An Adaptive Spoiler to Control the Transonic Shock [ J ]. Smart Material Structure ,2000, (9) : 141-148.
  • 3Munday D ,Jacob J. Active Control of Separation on a Wing with Oscillating Camber [J]. Journal of Aircraft,2002,39 (1) :187-189.
  • 4Streleca J K, Lagoudasa D C. Fabrication and Testing of a Shape Memory Alloy Actuated Reconfigurable Wing [ A ]. Smart Structures and Materials 2002 : Smart Structures and Integrated Systems [ C ]. Proceedings of SPIE, 2002: 267-280.
  • 5Clarke R, Allen M J, Dibley R P. Flight Test of the F/A- 18 Active Aeroelastic Wing Airplane [ A ]. AIAA Atmospheric Flight Mechanics Conference and Exhibit [ C ]. San Francisco, CA, 2005 : 1-31.
  • 6Shipley Jr N, Gopalarathnam A. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag [ A ]. 44th AIAA Aerospace Sciences Meeting and Exhibit [ C ]. Reno, Nevada,2006 : 1-14.
  • 7Eller D, Heinze S. An Approach to Induced Drag Reduction with Experimental Evaluation [ J ]. AIAA Journal of Aircraft ,2005,42 (6) : 1478-1485.
  • 8Weisshaar T, Duke K. Induced Drag Reduction Using Aeroelastic Tailoring with Adaptive Control Surfaces [ J]. Journal of Aircraft ,2006,43 ( 1 ) : 157-164.
  • 9Gilbert W. Mission Adaptive Wing System for Tactical Aircraft[ J ]. Journal of Aircraft, 1981,18 (7) :597-602.
  • 10Lu K, Kota S. Design of Compliant Mechanisms for Morphing Structural Shapes [ J]. Journal of Intelligent Material Systems and Structures,2003,14(6) :379-391.

共引文献23

同被引文献15

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部