期刊文献+

Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails 被引量:44

Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails
原文传递
导出
摘要 This paper studies the moderate deviations of real-valued extended negatively dependent(END) random variables with consistently varying tails.The moderate deviations of partial sums are first given.The results are then used to establish the necessary and sufficient conditions for the moderate deviations of random sums under certain circumstances. This paper studies the moderate deviations of real-valued extended negatively dependent(END) random variables with consistently varying tails.The moderate deviations of partial sums are first given.The results are then used to establish the necessary and sufficient conditions for the moderate deviations of random sums under certain circumstances.
出处 《Science China Mathematics》 SCIE 2010年第6期1421-1434,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10571139) the Research Foundation of Education Bureau of Hubei Province,China (Grant No.Q200710002)
关键词 MODERATE deviation extended negative dependence consistently VARYING TAIL random SUM moderate deviation extended negative dependence consistently varying tail random sum
  • 相关文献

参考文献1

二级参考文献17

  • 1Linnik, Yu. V.: Limit theorems allowing large deviations for the sums of independent variables Ⅰ, Ⅱ. Theory Probab. Appl., 6, 145-161,377-391 (1961).
  • 2Heyde, C. C.: A contribution to the theory of large deviations for sums of independent random variables. Z. Wahr., 7, 303-308 (1967).
  • 3Heyde, C. C.: On large deviation problems for sums of random variables which are not attracted to the normal law. Ann. Math. Statist., 38, 1575-1578 (1967).
  • 4Heyde, C. C.: On large deviation probabilities in the case of attraction to a nonnormal stable law. Sankyd., 30, 253-258 (1968).
  • 5Nagaev, A. V.: Integral limit theorems for large deviations when Cramer's condition is not fulfilled I, II. Theory Probab. Appl., 14, 51-64, 193-208 (1969).
  • 6Nagaev, A. V.: Limit theorems for large deviations when Cramer's conditions are violated. Izv. Akad. Nauk UzSSR Set. Fiz-Mat. Nauk., 7, 17-22 (1969).
  • 7Nagaev, S. V.: Large deviations for sums of independent random variables. In: Transactions of the Sixth Prague Conference on Information Theory, Random Processes and Statistical Decision Functions, 657-674 Academic, Prague, 1973.
  • 8Nagaev, S. V.: Large Deviations of sums of independent random variables. Ann. Probab., 7, 745-789 (1979).
  • 9Cline, D. B. H., Hsing, T.: Large deviation probabilities for sums of random variables with heavy or subexponential tails, Preprint, 1998, Texas A&M University.
  • 10Mikosch, T., Nagaev, A. V.: Large Deviations of Heavy-Tailed Sums with Applications in Insurance. Extremes, 1, 81-110 (1998).

共引文献4

同被引文献104

引证文献44

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部