期刊文献+

A relative local variational principle for topological pressure 被引量:2

A relative local variational principle for topological pressure
原文传递
导出
摘要 We define the relative local topological pressure for any given factor map and open cover,and prove the relative local variational principle of this pressure.More precisely,for a given factor map π:(X,T)→(Y,S) between two topological dynamical systems,an open cover U of X,a continuous,real-valued function f on X and an S-invariant measure ν on Y,we show that the corresponding relative local pressure P(T,f,U,y) satisfies sup μ∈M(X,T){ hμ(T,U|Y)+∫X f(x)dμ(x) :πμ=ν}=∫Y P(T,f,U,y)dν(y),where M(X,T) denotes the family of all T-invariant measures on X.Moreover,the supremum can be attained by a T-invariant measure. We define the relative local topological pressure for any given factor map and open cover,and prove the relative local variational principle of this pressure.More precisely,for a given factor map π:(X,T)→(Y,S) between two topological dynamical systems,an open cover U of X,a continuous,real-valued function f on X and an S-invariant measure ν on Y,we show that the corresponding relative local pressure P(T,f,U,y) satisfies sup μ∈M(X,T){ hμ(T,U|Y)+∫X f(x)dμ(x) :πμ=ν}=∫Y P(T,f,U,y)dν(y),where M(X,T) denotes the family of all T-invariant measures on X.Moreover,the supremum can be attained by a T-invariant measure.
出处 《Science China Mathematics》 SCIE 2010年第6期1491-1506,共16页 中国科学:数学(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities Postdoctoral Science Research Program of Jiangsu Province,China (Grant No.0701049C) supported by National Natural Science Foundation of China (Grant No.10971100) supported by National Basic Research Program of China (973 Program) (Grant No.2007CB814800)
关键词 pressure CONDITIONAL entropy RELATIVE LOCAL VARIATIONAL PRINCIPLE pressure conditional entropy relative local variational principle
  • 相关文献

参考文献20

  • 1Wen Huang,Yingfei Yi.A local variational principle of pressure and its applications to equilibrium states[J]. Israel Journal of Mathematics . 2007 (1)
  • 2Wen Huang,Xiangdong Ye.A local variational relation and applications[J]. Israel Journal of Mathematics . 2006 (1)
  • 3Castaing C,,Valadier M.Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics . 1977
  • 4Parry W.Topics in Ergodic Theory. Cambridge Tracts in Mathematics,no.75 . 1981
  • 5Ye X,Huang W,Shao S.Introduction to Topological Dynamical Systems. . 2008
  • 6Ruelle D.Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification. Transactions of the American Mathematical Society . 1973
  • 7Walters P.An introduction to ergodic theory. . 1982
  • 8Blanchard,F.A disjointness theorem involving topological entropy. Bulletin de la Société Mathématique de France . 1993
  • 9Blanchard,F.,Glasner,E.,Host,B.A variation on the variational principle and applications to entropy pairs. Ergodic Theory and Dynamical Systems . 1997
  • 10W. Huang,A. Maass,P. Romagnoli,and X. Ye.Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers. Ergod. Th. Dynam. Sys . 2004

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部