期刊文献+

Local Gromov-Witten invariants of canonical line bundles of toric surfaces 被引量:1

Local Gromov-Witten invariants of canonical line bundles of toric surfaces
原文传递
导出
摘要 We define and compute by localizating the local equivariant Gromov-Witten invariants of the canonical line bundles of toric surfaces,not necessarily Fano. We define and compute by localizating the local equivariant Gromov-Witten invariants of the canonical line bundles of toric surfaces,not necessarily Fano.
出处 《Science China Mathematics》 SCIE 2010年第6期1571-1582,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.10425101 and 10631050) the National Key Basic Research Development Program (973 Project) (Grant No.2006CB805905)
关键词 LOCAL Gromov-Witten INVARIANTS localization PARTITION function GEOMETRIC engineering local Gromov-Witten invariants localization partition function geometric engineering
  • 相关文献

参考文献22

  • 1Hiraku Nakajima,Kota Yoshioka.Instanton counting on blowup. I. 4-dimensional pure gauge theory[J]. Inventiones mathematicae . 2005 (2)
  • 2Mina Aganagic,Marcos Mari?o,Cumrun Vafa.All Loop Topological String Amplitudes from Chern-Simons Theory[J]. Communications in Mathematical Physics . 2004 (2)
  • 3T. Graber,R. Pandharipande.Localization of virtual classes[J]. Inventiones mathematicae . 1999 (2)
  • 4Atigah M,Bott R.The moment map and equivariant cohomology. Topology . 1984
  • 5Aganagic,M.,Klemm,A.,Mari?o,M.,Vafa,C.The topological vertex. Communications in Mathematical Physics . 2005
  • 6M. Bershadsky A. Johansen T. Pantev V. Sadov and C. Vafa.F-theory, geometric engineering and N = 1 dualities. Nuclear Physics B Particle Physics . 1997
  • 7Chiang,T.M.,Klemm,A.,Yau,S.T.,Zaslow,E.Local mirror symmetry: Calculations and interpretations. Adv. Theor. Math. Phys . 1999
  • 8Eguchi,T.,Kanno,H.Topological Strings and Nekrasov’s formulas. JHEP . 2003
  • 9Eguchi T,Kanno H.Geometric transitions,Chern-Simons gauge theory and Veneziano type amplitudes. Physics Letters . 2004
  • 10Iqbal A.All genus topological amplitudes and 5-brane webs as Feynman diagrams. .

同被引文献29

  • 1Pan Peng.A Simple Proof of Gopakumar-Vafa Conjecture for Local Toric Calabi-Yau Manifolds[J]. Communications in Mathematical Physics . 2007 (2)
  • 2Hiraku Nakajima,Kota Yoshioka.Instanton counting on blowup. I. 4-dimensional pure gauge theory[J]. Inventiones mathematicae . 2005 (2)
  • 3Mina Aganagic,Albrecht Klemm,Marcos Mari?o,Cumrun Vafa.The Topological Vertex[J]. Communications in Mathematical Physics . 2005 (2)
  • 4Mark Haiman.Vanishing theorems and character formulas for the Hilbert scheme of points in the plane[J]. Inventiones mathematicae . 2002 (2)
  • 5T. Graber,R. Pandharipande.Localization of virtual classes[J]. Inventiones mathematicae . 1999 (2)
  • 6Geir Ellingsrud,Stein Arild Str?mme.On the homology of the Hilbert scheme of points in the plane[J]. Inventiones Mathematicae . 1987 (2)
  • 7Eguchi T,Kanno H.Topological Strings and Nekrasovs formulas. JHEP . 2006
  • 8Gopakumar R,,Vafa C.M-theory and topological strings, II. . 1998
  • 9Iqbal A,Kian A,Poor K.Instanton counting and Chern-Simons theory. Adv Theor Math Phys . 2004
  • 10Konishi Y.Pole structure and Gopakumar Vafa conjecture. Publ RIMS Kyoto Univ . 2006

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部