期刊文献+

On the classification of compact quantum groups U_θ(2) 被引量:4

On the classification of compact quantum groups U_θ(2)
原文传递
导出
摘要 In this paper,we show that the corepresentation of compact group Uθ(2) on the vector space is determined by its infinitesimal generators B0,B2,A0,A1 and A2,where θ is an irrational number.We also show that B0 and B2 commute with Aj,j = 0,1,2,so B0,A0,A1 and A2 are sl(2,C) loop algebra.Then we exhibit all irreducible representations of Uθ(2),which are different from those of group U(2),and use above results to give the classification of quantum groups Uθ(2),which is analogous to that of irrational algebra Aθ.At the same time,we also give all the forms of automorphisms on quantum group Uθ(2). In this paper,we show that the corepresentation of compact group Uθ(2) on the vector space is determined by its infinitesimal generators B0,B2,A0,A1 and A2,where θ is an irrational number.We also show that B0 and B2 commute with Aj,j = 0,1,2,so B0,A0,A1 and A2 are sl(2,C) loop algebra.Then we exhibit all irreducible representations of Uθ(2),which are different from those of group U(2),and use above results to give the classification of quantum groups Uθ(2),which is analogous to that of irrational algebra Aθ.At the same time,we also give all the forms of automorphisms on quantum group Uθ(2).
出处 《Science China Mathematics》 SCIE 2010年第5期256-269,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10971011)
关键词 COMPACT QUANTUM GROUP comultiplication IRREDUCIBLE REPRESENTATION compact quantum group comultiplication irreducible representation
  • 相关文献

参考文献19

  • 1Xiao Xia ZHANG.The Compact Quantum Group Uq(2) (Ⅱ)[J].Acta Mathematica Sinica,English Series,2006,22(4):1221-1226. 被引量:1
  • 2Partha Sarathi Chakraborty,Arupkumar Pal.Equivariant Spectral Triples on the Quantum SU(2) Group[J]. K - Theory . 2003 (2)
  • 3Alain Connes,Michel Dubois-Violette.Noncommutative Finite-Dimensional Manifolds. I. Spherical Manifolds and Related Examples[J]. Communications in Mathematical Physics . 2002 (3)
  • 4Dan Voiculescu.The Topological Version of Free Entropy[J]. Letters in Mathematical Physics . 2002 (1)
  • 5Shuzhou Wang.Free products of compact quantum groups[J]. Communications in Mathematical Physics . 1995 (3)
  • 6Marc Rosso.Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra[J]. Communications in Mathematical Physics . 1988 (4)
  • 7S. L. Woronowicz.Compact matrix pseudogroups[J]. Communications in Mathematical Physics . 1987 (4)
  • 8Xiao Xia ZHANG.Differential Calculus on Compact Quantum Group U_θ(2) and its Applications[J].Acta Mathematica Sinica,English Series,2010,26(3):533-554. 被引量:2
  • 9Lusztig,G.Quantum deformations of certain simple modules over enveloping algebras. Advances in Mathematics . 1988
  • 10Br cker T,Dieck T tom.Representations of Compact Lie Groups. New York Berlin: Springer-Verlag . 1985

二级参考文献22

  • 1Connes, A.: Noncommutative geometry, New York, Academic Press, 1994.
  • 2Connes, A.: Noncommutative differential geometry. I. H. E. S. Publn. Math., 62, 257-360 (1985).
  • 3Drinfel, V. G.: Quantum groups, in Proc. I. C. M. (1, 2), Berkeley, California, 1986.
  • 4Jimbo, M.: A q-analoge of U(gl(N +1)), Hecke algebra and Yang Baxter equation. Lett. Math. Phys., 11, 247-252 (1986).
  • 5Woronowicz, S. L.: Twisted SU(2) group. An example of a non-commutative differential calculus. Publ. RIMS, Kyoto Univ., 23, 117-181 (1987).
  • 6Chakraborty, P. S., Pal, A.: Equibariant spectral triples on the quantum SU(2) group. K-Theory, 28, 107-126 (2003).
  • 7Connes, A.: cyclic cohomology, quantum group symmetries and the local index formula for SUq (2). J. Inst. Math. Jussieu, 3(1), 17-68 (2004).
  • 8Zhang, X. X., Zhao, Y. M.: The quantum group Uq(2) (Ⅰ). Linear Algebra Appl., 408, 244-258 (2005).
  • 9Connes, A., Violette, M. D.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys., 230, 539-579 (2002).
  • 10Zhang, X. X.: The compact quantum groups Uq(2) (Ⅱ). Acta Mathematica Sinica, English Series, 22(4), 1221-1226 (2006).

共引文献1

同被引文献14

  • 1Xiaoxia Zhang,Ervin Yunwei Zhao.The compact quantum group U q (2) I[J]. Linear Algebra and Its Applications . 2005
  • 2Alain Connes,Michel Dubois-Violette.Noncommutative Finite-Dimensional Manifolds. I. Spherical Manifolds and Related Examples[J]. Communications in Mathematical Physics . 2002 (3)
  • 3A. H. Chamseddine,A. Connes.The Spectral Action Principle[J]. Communications in Mathematical Physics . 1997 (3)
  • 4Alain Connes.Geometry from the spectral point of view[J]. Letters in Mathematical Physics . 1995 (3)
  • 5Alain Connes.Noncommutative differential geometry. Inst. Hautes études Sci. Publ. Math . 1985
  • 6Connes A.Non-Commutative Geometry. Journal of Women s Health . 1994
  • 7Kadison RV,Ringrose JR.Fundamentals of the Theory of Operator Algebras, Vol I. Elementary Theory. Journal of Women s Health . 1983
  • 8Connes A.On the spectral characterization of manifolds. http://xxx.lanl.gov/pdf/0810.2088.pdf . 2008
  • 9Dabrowski L,Hadfield T,Piotr M,et al.Index pariring for pullbacks of C*-algebras. http://xxx.lanl.gov/abs/math/0702001 . 2013
  • 10Davidson K.C*-algebras by Example. . 1996

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部