期刊文献+

Surface embeddability of graphs via homology 被引量:3

Surface embeddability of graphs via homology
原文传递
导出
摘要 This paper presents a characterization of the embeddability on a surface of genus arbitrarily given for a graph. Its specific case for the surface of genus zero leads to the famous planarity theorems given independently by Whitney via duality, MacLane via cycle basis and Lefschetz via double covering at a time. This paper presents a characterization of the embeddability on a surface of genus arbitrarily given for a graph. Its specific case for the surface of genus zero leads to the famous planarity theorems given independently by Whitney via duality, MacLane via cycle basis and Lefschetz via double covering at a time.
出处 《Science China Mathematics》 SCIE 2010年第11期2889-2892,共4页 中国科学:数学(英文版)
关键词 SURFACE GRAPH EMBEDDING DUALITY HOMOLOGY surface graph embedding duality homology
  • 相关文献

参考文献9

  • 1Lefschetz S.Planar graphs and related topics[].Proceedings of the National Academy of Sciences of the United States of America.1965
  • 2Liu Y P.Theory of Polyhedra[]..2008
  • 3Liu Y P.Topological Theory on Graphs[]..2008
  • 4Abrams L,Slilaty D C.An algebraic characterization of projective-planar graphs[].Journal of Graph Theory.2003
  • 5Archdeacon D.A Kuratowski theorem for the projective plane[].Journal of Combinatorial Theory.1981
  • 6MacLane,S.A combinatorial condition for planar graphs[].Fundamenta Mathematicae.1937
  • 7Kuratowski K.Sur le problème des courbes gauches en topologie[].Fundamenta Mathematicae.1930
  • 8Whitney,H. Fundamenta Mathematicae . 1933
  • 9Liu,Y. P. Embeddability in Graphs . 1995

同被引文献5

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部