摘要
In this paper, one-dimensional (1D) nonlinear Schrdinger equation iut-uxx + Mσ u + f ( | u | 2 )u = 0, t, x ∈ R , subject to periodic boundary conditions is considered, where the nonlinearity f is a real analytic function near u = 0 with f (0) = 0, f (0) = 0, and the Floquet multiplier Mσ is defined as Mσe inx = σne inx , with σn = σ, when n 0, otherwise, σn = 0. It is proved that for each given 0 【 σ 【 1, and each given integer b 】 1, the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with b-dimensional Diophantine frequencies, corresponding to b-dimensional invariant tori of an associated infinite-dimensional Hamiltonian system. Moreover, these b-dimensional Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.
In this paper, one-dimensional (1D) nonlinear Schrdinger equation iut-uxx + Mσ u + f ( | u | 2 )u = 0, t, x ∈ R , subject to periodic boundary conditions is considered, where the nonlinearity f is a real analytic function near u = 0 with f (0) = 0, f (0) = 0, and the Floquet multiplier Mσ is defined as Mσe inx = σne inx , with σn = σ, when n 0, otherwise, σn = 0. It is proved that for each given 0 < σ < 1, and each given integer b > 1, the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with b-dimensional Diophantine frequencies, corresponding to b-dimensional invariant tori of an associated infinite-dimensional Hamiltonian system. Moreover, these b-dimensional Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.
基金
supported by National Natural Science Foundation (Grant Nos.10531050, 10771098)
National Basic Research Program of China (973 Projects) (Grant No. 2007CB814800)