期刊文献+

Jackson’s theorem in Q_p spaces 被引量:6

Jackson’s theorem in Q_p spaces
原文传递
导出
摘要 A Jackson type inequality in Q p spaces is established, i.e., for any f (z) = Σ∞ j=0 ajzj ∈ Qp , 0≤p 【 ∞, a 】 1, and k-1 ∈ N,where ω(1/k, f, Q p ) is the modulus of continuity in Q p spaces and C(a) is an absolute constant depending only on the parameter a. A Jackson type inequality in Q p spaces is established, i.e., for any f (z) = Σ∞ j=0 ajzj ∈ Qp , 0≤p < ∞, a > 1, and k-1 ∈ N,where ω(1/k, f, Q p ) is the modulus of continuity in Q p spaces and C(a) is an absolute constant depending only on the parameter a.
出处 《Science China Mathematics》 SCIE 2010年第2期367-372,共6页 中国科学:数学(英文版)
基金 Supported by the Unidade de Investigao "Matemtica e Aplicaoes" of University of Aveiro, National Natural Science Foundation of China (Grant No. 10771201) New Century Excellent Talentsin University (Grant No. 05-0539)
关键词 Q P space BMOA POLYNOMIAL approximation Q p space BMOA polynomial approximation
  • 相关文献

参考文献15

  • 1Ming Zhi WANG,Guang Bin REN.Jackson's Theorem on Bounded Symmetric Domains[J].Acta Mathematica Sinica,English Series,2007,23(8):1391-1404. 被引量:3
  • 2Aulaskari R,Xiao J,Zhao R H.On subspaces and subsets of BMOA and UBC. Analysis . 1995
  • 3Garnett JB.Bounded Analytic Functions. . 1981
  • 4John F,Nirenberg L.On functions of bounded mean oscillation. Communications of the ACM . 1961
  • 5V. Andrievskii.Harmonic version of Jackson’s theorem in the complex plane. Journal of Approximation Theory . 1997
  • 6II,Baernstein,A.,Brannan,D. A.,Clunie,J. G.Analytic functions of bounded mean oscillation. Aspects of contemporary complex analysis . 1980
  • 7Colzani,L.Jackson theorems on Hardy spaces and approximation by Riesz means. Journal of Approximation Theory . 1987
  • 8Devore R A,,Lorentz G G.Construction Approximation. . 1993
  • 9Jackson,D.On the approximation by trigonometric sums and polynomials. Transactions of the American Mathematical Society . 1912
  • 10Kryakin Y,Trebels W.q-moduli of continuity in Hp(D),p&gt;0,and an inequality of Hardy and Littlewood. Journal of Approximation Theory . 2002

二级参考文献1

共引文献2

同被引文献7

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部