期刊文献+

Convergence analysis of the adaptive finite element method with the red-green refinement

Convergence analysis of the adaptive finite element method with the red-green refinement
原文传递
导出
摘要 In this paper, we analyze the convergence of the adaptive conforming P 1 element method with the red-green refinement. Since the mesh after refining is not nested into the one before, the Galerkin-orthogonality does not hold for this case. To overcome such a difficulty, we prove some quasi-orthogonality instead under some mild condition on the initial mesh (Condition A). Consequently, we show convergence of the adaptive method by establishing the reduction of some total error. To weaken the condition on the initial mesh, we propose a modified red-green refinement and prove the convergence of the associated adaptive method under a much weaker condition on the initial mesh (Condition B). In this paper, we analyze the convergence of the adaptive conforming P 1 element method with the red-green refinement. Since the mesh after refining is not nested into the one before, the Galerkin-orthogonality does not hold for this case. To overcome such a difficulty, we prove some quasi-orthogonality instead under some mild condition on the initial mesh (Condition A). Consequently, we show convergence of the adaptive method by establishing the reduction of some total error. To weaken the condition on the initial mesh, we propose a modified red-green refinement and prove the convergence of the associated adaptive method under a much weaker condition on the initial mesh (Condition B).
出处 《Science China Mathematics》 SCIE 2010年第2期499-512,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.10601003, 10971005) Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.200718) National Basic Research Program of China (Grant No. 2005CB321704)
关键词 red-green REFINEMENT adaptive finite element method convergence non-nested local REFINEMENT red-green refinement adaptive finite element method convergence non-nested local refinement
  • 相关文献

参考文献24

  • 1Roland Becker,Shipeng Mao.An optimally convergent adaptive mixed finite element method[J]. Numerische Mathematik . 2008 (1)
  • 2Carsten Carstensen,Ronald H.W. Hoppe.Convergence analysis of an adaptive nonconforming finite element method[J]. Numerische Mathematik . 2006 (2)
  • 3Fleischmann P. http://www.iue.tuwien.ac.at/phd/fleischmann/node23.html .
  • 4Hu J,Shi Z C,Xu J C.The convergence of the adaptive Morley-type elements. . 2009
  • 5Hu J,Xu J C.Convergence of adaptive conforming and nonconforming finite methods for the perturbed stokes equation. . 2007
  • 6Leitner E,Selberherr S.Three-dimensional grid adaptation using a mixed-element decomposition method. Simulation of Semiconductor Devices and Processes . 1995
  • 7Molino N,Bridson R,Teran J, et al.A crystalline, red green strategy for meshing highly deformable objects with tetra- hedra. Proceedings of the 12th International Meshing Roundtable . 2003
  • 8Taakili A,Becker R. http://web.univ-pau.fr/ ~ becker/ConchaBase/ConchaBasePool/RedGreen/ .
  • 9Ainsworth M,Oden J T.A Posteriori Error Estimation in Finite Element Analysis. . 2000
  • 10Bank R E.PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: User’s Guide 6.0. . 1990

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部