摘要
In this paper we make a further discussion of a relationship between the number of fixed-points and distribution of singular values along the round annuli centered at the origin of a transcendental meromorphic function. To attain our purpose we first establish a fundamental inequality for the modulus of derivative of a holomorphic covering mapping whose image is an annulus by virtue of the hyperbolic metric. The inequality is of independent significance. We make a simple survey on some domain constants for hyperbolic domains.
In this paper we make a further discussion of a relationship between the number of fixed-points and distribution of singular values along the round annuli centered at the origin of a transcendental meromorphic function. To attain our purpose we first establish a fundamental inequality for the modulus of derivative of a holomorphic covering mapping whose image is an annulus by virtue of the hyperbolic metric. The inequality is of independent significance. We make a simple survey on some domain constants for hyperbolic domains.
基金
supported by National Natural Science Foundation of China (Grant No.10871108)