摘要
In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semiglobal uniform ultimate bound-edness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neigh-borhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control-based switching strategy is proposed to overcome the uncontrollability problem associated with x 0 (t 0 ) = 0.
In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semiglobal uniform ultimate bound-edness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neigh-borhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control-based switching strategy is proposed to overcome the uncontrollability problem associated with x 0 (t 0 ) = 0.