期刊文献+

具有避难所的三种群捕食系统的持久性和周期解 被引量:4

Persistence and Periodic Solution for Three Interacting Predator-Prey System with Refuges
原文传递
导出
摘要 本文研究了一类由一个捕食者种群和两个食饵种群构成的非自治生态系统,系统中食饵种群具有避难所,捕食者种群具有比率依赖型功能性反应.应用常微分方程中的定性和稳定性的方法,得到了在一定条件下系统是一致持久的,进一步证明了在适当条件下,系统存在唯一的全局渐近稳定的周期解。 In this paper considers a kind of nonautonomous system of one predator population and two prey population,in which the predator species response function is of ratio dependent,Incorporating a prey refuges.Using ordinary differential equation qualitative and stability method,Proved that the system can be uniform persistence under certain conditions,We also derive it has a unige periodic solution,which is global asymptotic stability under the appropriate conditions.
出处 《阴山学刊(自然科学版)》 2009年第1期14-17,共4页 Yinshan Academic Journal(Natural Science Edition)
基金 内蒙古自治区高等学校科学研究项目(NJzc08134)
关键词 避难所 一致持久 周期解 全局渐近稳定 refuges uniform persistence periodic solution global asymptotic stability
  • 相关文献

参考文献3

二级参考文献4

共引文献15

同被引文献24

  • 1余胜平,熊文涛,齐欢.具有时滞和避难所的比率型-捕食者-两竞争食饵模型[J].应用数学,2010,23(1):198-203. 被引量:3
  • 2朱晶,刘会民.具有避难所的两种群捕食者—食饵系统持久性[J].西北民族大学学报(自然科学版),2006,27(2):1-3. 被引量:3
  • 3Chen Fengde, Chen Yuming, Shi Jinlin. Stability of the boundary solution of a nonau- tonomous predator-prey system with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2008, 344(2): 1057-1067.
  • 4Chen F D, Chen L J, Xie X D. On a Leslie-Cower predator-prey model incorporating a prey refuge [ J ]. Nonlinear Anal:Real World Appl,2009,10 ( 5 ) :2 905 - 2 908.
  • 5Chen F D. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay [ J ]. J Comput Appl Math, 2005,180(1 ) :33 -49.
  • 6Zhaozhi Ma,Fengde Chen,Chengqiang Wu,Wanlin Chen.Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference[J].Applied Mathematics and Computation.2013
  • 7Fengde Chen,Zhaozhi Ma,Huiying Zhang.Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey–predator model incorporating a constant number of prey refuges[J].Nonlinear Analysis: Real World Applications.2012(6)
  • 8Shengbin Yu,Zhen Jin.Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes[J].Discrete Dynamics in Nature and Society.2012
  • 9Sahabuddin Sarwardi,Mainul Haque,Prashanta Mandal.Ratio-dependent predator–prey model of interacting population with delay effect[J].Nonlinear Dynamics.2012(3)
  • 10Fengde Chen,Liujuan Chen,Xiangdong Xie.On a Leslie–Gower predator–prey model incorporating a prey refuge[J].Nonlinear Analysis: Real World Applications.2009(5)

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部