摘要
采用具有通信时延的静态一致性算法研究二阶动态个体的耦合一致性问题。根据频域分析法,分别得到连续时间和离散采样二阶动态个体渐近收敛静态一致的条件,该条件与通信时延、控制参数有关。此外,在采样系统中,一致性收敛还取决于采样间隔大小,且当采样间隔超过其上界时,系统状态发散。仿真结果证明了结论的正确性。
The stationary consensus algorithm with communication delay was proposed to solve the coupled consensus problem of the second-order dynamic agents. Based on the frequency domain analysis, the conditions, which depend on the communication delay and the control parameters, are obtained for the continuous-time and the discrete sampled-data second-order dynamic agents converging to a stationary consensus asymptotically, respectively. Moreover, the consensus convergence is subjected to the sampling interval in the sampled-data system, and the system diverges when the sampling interval is larger than the critical value. The simulation results illustrate the correctness of the algorithm.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第S1期29-34,共6页
Journal of Central South University:Science and Technology
基金
国家自然科学基金资助项目(60574001)
教育部"新世纪优秀人才支持计划"专项基金资助项目(NCET-05-0485)
关键词
二阶动态个体
耦合一致性
通信时延
second-order dynamic agent
coupled consensus
communication delay