期刊文献+

MLLR特征的SVM语种识别算法

MLLR based SVM language identification algorithm
原文传递
导出
摘要 为了挖掘更多语种间区分性信息进行可靠的自动语种识别,本文提出一种将自适应领域的最大似然线性回归(maximum likelihood linear regression,MLLR)矩阵作为特征的语种识别算法。该算法首先对每个语种训练Gauss混合模型(Gaussian mixture model,GMM),然后对每个语音段在所有语种的GMM上计算MLLR矩阵。将得到的多类MLLR矩阵经归一化后拼接形成超矢量作为特征输入支持向量机(support vector machine,SVM)分类器进行训练和识别。比较了均值方差和排序两种归一化方法,并将多类MLLR-SVM算法与传统GMM语种识别算法进行对比。实验表明:排序归一化算法优于传统的均值方差归一化;建立在GMM模型基础上的MLLR-SVM系统性能有9.7%的提升,并与GMM分类器有很强的互补性。 This paper presents a language identification algorithm based on maximum likelihood linear regression(MLLR).The algorithm first trains the language dependent Gaussian mixture models(GMMs),calculates the MLLR transforms for every speech segment from the GMMs,and then combines the MLLRs to form supervectors for support vector machine(SVM) classifier training and testing after normalization.Tests comparing mean/variance normalization with rank normalization and the current MLLR-SVM system with the GMM classifier show that rank normalization outperforms the traditional mean/variance normalization With the MLLR-SVM system 9.7% better than the GMM classifier,but can complement the GMM classifier results.
作者 钟山 刘加
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期1283-1287,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60776800) 国家"八六三"高技术项目(2006AA010101 2007AA04Z223 2008AA02Z414)
关键词 语种识别 语音段 最大似然线性回归(MLLR) 支持向量机(SVM) language identification speech segment maximum likelihood linear regression (MLLR) support vector machine(SVM)
  • 相关文献

参考文献13

  • 1TONG Rong,MA Bin,ZHU Donglai,et al.Integratingacoustic,prosodic and phonotactic features for spokenlanguage identification. Proc ICASSP . 2006
  • 2Torres-Carrasquillo P A,Siner E,Kohler M A,et al.Approaches to language identification using Gaussian mixutremodels and shifted delta cepstral features. ProcInternational Conference on Spoken Language Processing . 2002
  • 3Campbell W M,Torres-Carrasquillo P A,Reynolds D A.Language recognition with support vector machines. Proc IEEE Odyssey . 2004
  • 4Burget L,Matejka P,Cernocky J.Discriminative trainingtechniques for acoustic language identification. ProcICASSP . 2006
  • 5Castaldo F,Colibro D,Dalmasso E,et al.Acoustic languageidentification using fast discriminative training. ProcInterspeech . 2007
  • 6Stolcke A,Ferrer L,Kajarekar S,et al.MLLR transformsas features in speaker recognition. Proc 9th Eur.Conf.Speech Commun.Technol . 2005
  • 7Karam A N,Campbell W M.A new kernel for SVM MLLRbased speaker recognition. Proc Interspeech . 2007
  • 8Stolcke A,Kajarekar S,Ferrer L,et al.Speaker recognitionwith session variability normalization based on MLLRadaptation transforms. IEEE Trans Audio,Speech andLanguage Processing . 2007
  • 9Stolcke A,Ferrer L,Kajarekar S.Improvements inMLLR-transform-based speaker recognition. Proc IEEEOdyssey-The Speaker and Language Recognition Workshop . 2006
  • 10Stolcke A,Kajarekar S,Ferrer L.Nonparametric featurenormalization for SVM-based speaker verification. ProcICASSP . 2008

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部