期刊文献+

一种基于DLPP的动态过程故障检测方法 被引量:3

A fault detection method based on DLPP for dynamic processes
原文传递
导出
摘要 针对动态过程故障检测问题,提出一种基于局部保持投影(locality preserving projections,LPP)和扩展矩阵的动态局部保持投影(dynamic LPP,DLPP)新算法.相比动态主元分析(dynamic principal component a-nalysis,DPCA)方法,该算法可以提取隐藏于过程数据中的低维流型信息,建立更精确的模型.首先选择合适的动态步数,构造扩展矩阵;然后使用LPP算法提取信息,将扩展矩阵空间划分为特征空间和残差空间;最后针对这2个空间分别构造T2和SPE统计量对工业过程进行监测.通过在田纳西-伊斯曼(Tennessee-East-man,TE)模型上的仿真研究,表明了该算法是有效的. In order to handle the fault detection problem for dynamic processes,a novel method named as DLPP(dynamic locality preserving projections) was proposed,which was based on LPP(locality preserving projections) and extending matrix.Compared with DPCA(dynamic principal component analysis),the new method can capture the low-dimensional manifold information hidden in the process data and build more accurate model.In this study,first we chose the proper value of dynamic step for constructing extending matrix;then the LPP algorithm was used to extract information and divide extending matrix space into two parts: feature space and residual space;finally,T2 and SPE(squared prediction error) statistics corresponding to these two spaces were built to monitor the process.A case study of TE(Tennessee Eastman) process illustrated the efficiency of the proposed method.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期62-65,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(6077406760736021)
关键词 动态主元分析 流形学习 局部保持投影 动态过程监测 DPCA manifold learning LPP dynamic processes monitoring
  • 相关文献

参考文献10

  • 1Hu K,Yuan J.Batch process monitoring with tensorfactorization. Journal of Process Control . 2009
  • 2He X F,Cai D,Min W.Statistical and computationalanalysis of LPP. Proceedings of the 22nd Inter-national Conference on Machine Learning . 2005
  • 3He X F,,Niyogi P.Locality preserving projections. Proceedings of the 17th Annual Conference on NeuralInformation Processing Systems . 2003
  • 4Chen J H,Liu K C.On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science . 2002
  • 5Downs J J,Vogel E F.A plant-wide industrial process control problem. Computers and Chemistry . 1993
  • 6Chiang LH,Russell FL,Braatz RD.Fault detection and diagnosis in industrial systems. . 2001
  • 7Ku W,Storer R. H,Georgakis C.Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems . 1995
  • 8Hu K,Yuan J.Multivariate statistical process control based on multiway locality preserving projections. Journal of Process Control . 2008
  • 9Westerhuis J.A,Gurden S.P,Smilde A.K.Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems . 2000
  • 10GE Z Q,,SONG Z H.Process monitoring based on inde-pendent component analysis-principal component analysis(ICA-PCA)and similarity factors. Industrial and Engineering Chemistry Research . 2007

同被引文献28

  • 1吴斌,于春梅,李强.过程工业故障诊断[M].北京:科学出版社,2011:203-230.
  • 2Ku W, Storer R H, Georgakis C. Disturbance detection and isola tion by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1) : 179 - 196.
  • 3Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science. 2002, 57 (1): 63-75.
  • 4Li W, Yue H, Valle S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10 (5): 471 -486.
  • 5Bakshi B R. Multiscale PCA with application to multivariate statisti- cal process monitoring [J]. AIChEJournal. 1998, 44 (7): 1596- 1610.
  • 6He X F, Niyogi P. Locality Preserving Projections [A]. Proceed ings of the 17th Annual Conference on Neural Information Process- ing Systems [C]. Cambridge: the MIT Press, 2003.
  • 7Yu J B. Local and global principal component analysis for process monitoring[J]. Journal of Process Control, 2012, 22 (7) : 1358 - 1373.
  • 8Yu C M. A novel feature selection method for process fault diagno- sis. Applied Mechanics and Materials [J]. 2013, 247 -249:2045 - 2049.
  • 9Zhang M G, Ge Z Q, Song Z H. et al. Global-local structure a- nalysis model and its application for fault detection and identifica- tion [J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6387-6848.
  • 10Fu R W, Zhang M G, Song Z H, et al. Global-Local Structure Analysis for Fault Detection [A]. Proceedings of the 49th IEEE Conference on Decision and Control, Hilton Atlanta Hotel, At- lanta [C]. GA, USA, 2010: 15-17.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部