摘要
The Fe-based composite coatings were produced on the attrition spot of cutting pick by plasma jet surface metallurgy, and metallurgical bonding was obtained between coating and substrate. The results show that the microstructure, microhardness, wear resistance and erode resistance of the coating are all evaluated. The coating has apparent characteristics of rapid and layered crystallization from planar crystal-cell/dendritic transition zone on the interface, to equiaxed crystal on the midst, to spike crystal on the surface. The microhardness gradually increases from the bottom to the top of the coating. The composite coating has better wear resistance and erode resistance compared to steel substrate.
The Fe-based composite coatings were produced on the attrition spot of cutting pick by plasma jet surface metallurgy, and metallurgical bonding was obtained between coating and substrate. The results show that the microstructure, microhardness, wear resistance and erode resistance of the coating are all evaluated. The coating has apparent characteristics of rapid and layered crystallization from planar crystal-cell/dendritic transition zone on the interface, to equiaxed crystal on the midst, to spike crystal on the surface. The microhardness gradually increases from the bottom to the top of the coating. The composite coating has better wear resistance and erode resistance compared to steel substrate.
出处
《中国有色金属学会会刊:英文版》
CSCD
2009年第S3期583-586,共4页
Transactions of Nonferrous Metals Society of China
基金
Project(50801032) supported by the National Natural Science Foundation of China
Project(2008GQC0027) supported by the Natural Science Foundation of Jiangxi Province, China
Project(GJJ08270) supported by the Foundation of Education Office of Jiangxi Province, China