摘要
对选煤生产过程优化目标进行了分析,采用以经济效益为目标,建立了优化工艺参数与优化目标间的关系模型,该模型是非线性的。选煤生产过程工艺参数优化就是指在市场需求、资源配置,生产能力等条件下,选择最合适的分选密度和分选灰分,获得最大经济效益。遗传算法利用生物进化机制,在一个较大的初始解空间中,通过优胜劣汰的方法进行优化求解,和其他优化方法相比不仅寻优能力强而且计算速度快。基于遗传算法对选煤生产过程工艺参数进行了优化操作,根据具体情况,采用特定的遗传操作。仿真结果表明,优化后的工艺参数能获得最大的经济效益。
The optimization model of coal preparation production process is given in the objective of economic benefits.Relational model between the optimization process parameter and the optimization goal is founded.The model is nonlinear.Under the conditions of market demand,the resources deployment,productivity and so on,the process parameter optimization of coal preparation production is to choose the appropriate separation density and separation ash to obtain the maximum economic profit.GA is a way of using the mechanisms of biological evolution to solve the optimization in a larger space of the initial solution through the survival of the fittest.Compared with the other methods,it doesn't only have the stronger optimizing ability,but also its computing speed is quicker.The process parameter optimization of coal preparation production is carried on genetic algorithm.According to the special details,the specific heredity operation is adopted.The simulation results show that the optimized process parameter can obtain the maximum economic benefits.
出处
《控制工程》
CSCD
北大核心
2009年第S3期1-3,6,共4页
Control Engineering of China
关键词
遗传算法
选煤
工艺参数优化
genetic algorithm
coal preparation
process parameter optimization