期刊文献+

基于KPCA和LSSVM的软测量建模与应用 被引量:1

Soft Sensor Modelling and Application Based on KPCA and LSSVM
下载PDF
导出
摘要 提出一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法。利用核主元分析对软测量的输入数据进行数据压缩,提取非线性主元,然后用最小二乘支持向量机进行建模,降低模型复杂度,提高模型泛化能力,通过交叉验证方法对支持向量机的参数进行选择。将其应用于石油树脂粘度的软测量建模,仿真结果表明,该方法具有跟踪性能好,泛化能力强等优点。与实际生产中使用的方法相比,预测精度明显提高,是一种有效的软测量建模方法。 A soft sensor based on kernel principal component analysis(KPCA) and least square support vector machine (LSSVM) is proposed.KPCA is applied to compress data,and choose the nonlinear component.LSSVM is used to proceed regression modelling,which reduces the complexity of calculation and improves the generalization ability.Cross validation method is used to select proper parameters of LSSVM method.Soft sensor is applied to predict viscosity of petroleum resin.Results show that this method features good approximation and good generalization ability.Compared with the method used in the factory now,the precision of prediction is improved.It is proved to be an efficient modelling method.
出处 《控制工程》 CSCD 北大核心 2009年第S1期176-179,共4页 Control Engineering of China
关键词 软测量 核主元分析 最小二乘支持向量机 数据建模 soft sensor kernel PCA LSSVM data modelling
  • 相关文献

参考文献3

二级参考文献29

共引文献141

同被引文献17

  • 1俞金寿,孙自强.过程自动化及仪表[M].北京:化学工业出版社,2009:188.
  • 2IKOPF SCHB,SMOLA A,MLLER K R.Nonlinear com-ponent analysis as a kernel eigenvalue problem[J].NeuralComputation(S0899-7667),1998,10(5):1299-1319.
  • 3JADEA M,SRIKANTH B,JAYARAMAN V K,et al.Featureextraction and denoising using kernel PCA[J].Chemical Engi-neering Science,2003,58(19):4441-4448.
  • 4WIDODO A,YANG B S.Application of nonlinear feature ex-traction and support vector machines for fault diagnosis of in-duction motors[J].Expert Systems with Applications,2007,33(1):241-250.
  • 5SUYKENS J A K,VANDEWALLE J.Least squares supportvector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 6SUYKENS J A K.Nonlinear Modeling and Support VectorMachines[C]//IEEE Instrumentation and MeasurementTechnology Conf.Budapest:[s.n.],2001:108-119.
  • 7OJEDA F,SUYKENS J A K,MOOR B D.Low rank updatedLS-SVM classifiers for fast variable selection[J].Neural Net-works,2008,21(2/3):437-449.
  • 8WONG P K,VONG C M,TAM L M,et al.Data preprocess-ing and modelling of electronically-controlled automotive en-gine power performance using kernel principal components a-nalysis and least squares support vector machines[J].Inter-national Journal of Vehicle Systems Modelling and Testing,2008,3(4):312-330.
  • 9SCHOLKOPF B,SUNG K,BURGES C,GIROSI F,et al.Comparing support vector machines with Gaussian kernels toradial basis function classifier[J].IEEE Transactions on Sig-nal Processing,1997,45(11):2758-2765.
  • 10KEERTHI S S K,LIN C J.Asymptotic behaviors of supportvector machines with Gaussian kernel[J].Neural Computa-tion,2003,15(7):1667-1689.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部