期刊文献+

Construction of convex solutions for the second type of Feigenbaum's functional equations 被引量:1

Construction of convex solutions for the second type of Feigenbaum’s functional equations
原文传递
导出
摘要 In this paper, convex solutions for the second type of Feigenbaum's equation f (x) = λ1 f (f (λx)), 0 < λ < 1, f (0) = 1, 0 f (x) 1, x ∈ [0, 1] are investigated. Using constructive methods, we discuss the existence and uniqueness of continuous convex solutions, C1-convex solutions and C2-convex solutions of the above equation. In this paper, convex solutions for the second type of Feigenbaum’s equation f (x) = λ1 f (f (λx)), 0 < λ < 1, f (0) = 1, 0 f (x) 1, x ∈ [0, 1] are investigated. Using constructive methods, we discuss the existence and uniqueness of continuous convex solutions, C1-convex solutions and C2-convex solutions of the above equation.
出处 《Science China Mathematics》 SCIE 2009年第8期1617-1638,共22页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10871117) Natural Science Foundation of Shandong Province (Grant No. Y2006A07)
关键词 the SECOND TYPE of Feigenbaum’s functional equations CONSTRUCTIVE method initial function CONVEX SOLUTIONS the second type of Feigenbaum’s functional equations, constructive method, initial function, convex solutions
  • 相关文献

参考文献19

  • 1Henri Epstein.Existence and Properties of p-tupling Fixed Points[J]. Communications in Mathematical Physics . 2000 (2)
  • 2Jean-Pierre Eckmann,Peter Wittwer.A complete proof of the Feigenbaum conjectures[J]. Journal of Statistical Physics . 1987 (3-4)
  • 3H. Epstein.New proofs of the existence of the Feigenbaum functions[J]. Communications in Mathematical Physics . 1986 (3)
  • 4Patrick J. McCarthy.The general exact bijective continuous solution of Feigenbaum’s functional equation[J]. Communications in Mathematical Physics . 1983 (3)
  • 5M. Campanino,H. Epstein.On the existence of Feigenbaum’s fixed point[J]. Communications in Mathematical Physics . 1981 (2)
  • 6Mitchell J. Feigenbaum.The universal metric properties of nonlinear transformations[J]. Journal of Statistical Physics . 1979 (6)
  • 7Mitchell J. Feigenbaum.Quantitative universality for a class of nonlinear transformations[J]. Journal of Statistical Physics . 1978 (1)
  • 8Couliet P,Tresser C.It′eration d’endomorphismes de renormalisation. J Phys Colloque C . 1978
  • 9Douady. A.Hubbard.J. H. On the dynamics of polynomial-like mappings. Annales Scientifiques de l Ecole Normale Superieure . 1985
  • 10III,Lanford,O. E.A computer-assisted proof of the Feigenbaum conjectures. Bulletin of the American Mathematical Society . 1982

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部