期刊文献+

Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise 被引量:13

Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise
原文传递
导出
摘要 In this paper, we prove the global existence and uniqueness of the strong and weak solutions for 2D Navier-Stokes equations on the torus $ \mathbb{T}^2 $ perturbed by a Lévy process. The existence of invariant measure of the solutions are proved also. In this paper,we prove the global existence and uniqueness of the strong and weak solutions for 2D Navier-Stokes equations on the torus T2 perturbed by a Lévy process.The existence of invariant measure of the solutions are proved also.
出处 《Science China Mathematics》 SCIE 2009年第7期1497-1524,共28页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China (Grant No. 2006CB8059000) Science Fund for Creative Research Groups (Grant No.10721101) National Natural Science Foundation of China (GrantNos.10671197,10671168) Science Foundation of Jiangsu Province (Grant Nos.BK2006032,06-A-038,07-333) Key Lab of Random Complex Structures and Data Science,Chinese Academy of Sciences
关键词 stochastic Navier-Stokes equation Lévy process strong solution weak solution 34D08 34D25 60H20 stochastic Navier-Stokes equation Lévy process strong solution weak solution
  • 相关文献

参考文献16

  • 1Erika Hausenblas.SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results[J]. Probability Theory and Related Fields . 2007 (1-2)
  • 2Sergei B. Kuksin.The Eulerian Limit for 2D Statistical Hydrodynamics[J]. Journal of Statistical Physics . 2004 (1-2)
  • 3Franco Flandoli.Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Nonlinear Differential Equations and Applications NoDEA . 1994 (4)
  • 4Hausenblas E.SPDEs driven by Poisson random measure with non Lipschitz coe cients: existence results. Probability Theory and Related Fields . 2007
  • 5Robinson J C.Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors. . 2001
  • 6Roger Temam.Navier-Stokes Equations and Nonlinear Functional Analysis. . 1995
  • 7Teman R.Infinite-dimensional dynamical systems in mechanics and physics,2nd ed. . 1997
  • 8Da,Prato,G.,Zabczyk,J. Stochastic Equations in Infinite Dimensions . 1992
  • 9Da Prato,G.,Zabczyk,J.Ergodicity for infinite dimensional systems. London Mathematical Society. Lecture Notes Series, vol. 229 . 1996
  • 10Flandoli,F.Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differential Equations and Applications . 1994

同被引文献24

  • 1谢颖超.一类非时齐非Lipschitz条件下随机偏微分方程解的存在性和唯一性(英文)[J].徐州师范大学学报(自然科学版),2007,25(1):1-5. 被引量:2
  • 2Z. Dong.On the Uniqueness of Invariant Measure of the Burgers Equation Driven by Lévy Processes[J]. Journal of Theoretical Probability . 2008 (2)
  • 3R. Mikulevicius,H. Pragarauskas,N. Sonnadara.On the Cauchy-Dirichlet Problem in the Half Space for Parabolic SPDEs in Weighted Hoelder Spaces[J]. Acta Applicandae Mathematicae . 2007 (1-3)
  • 4Erika Hausenblas.SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results[J]. Probability Theory and Related Fields . 2007 (1-2)
  • 5R. Mikulevicius,H. Pragarauskas.On Cauchy—Dirichlet Problem for Parabolic Quasilinear SPDEs[J]. Potential Analysis . 2006 (1)
  • 6Giuseppe Da Prato,Arnaud Debussche,Beniamin Goldys.Some properties of invariant measures of non symmetric dissipative stochastic systems[J]. Probability Theory and Related Fields . 2002 (3)
  • 7Dorel Barbu,Gheorghe Boc?an.Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients[J]. Czechoslovak Mathematical Journal . 2002 (1)
  • 8Erwan Saint Loubert Bié.étude d’une EDPS conduite par un bruit poissonnien[J]. Probability Theory and Related Fields . 1998 (2)
  • 9Franco Flandoli,Bohdan Maslowski.Ergodicity of the 2-D Navier-Stokes equation under random perturbations[J]. Communications in Mathematical Physics . 1995 (1)
  • 10Y.Liu,H.Z.Zhao.Representation of pathwise staionary solutions of stochastic Burgers‘ equations. Stochastics and Dynamics . 2009

引证文献13

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部