期刊文献+

On the structure of Fatou domains 被引量:1

On the structure of Fatou domains
原文传递
导出
摘要 Let U be a multiply-connected fixed attracting Fatou domain of a rational map f.We prove that there exist a rational map g and a completely invariant Fatou domain V of g such that(f,U) and(g,V) are holomorphically conjugate,and each non-trivial Julia component of g is a quasi-circle which bounds an eventually superattracting Fatou domain of g containing at most one postcritical point of g.Moreover,g is unique up to a holomorphic conjugation. Let U be a multiply-connected fixed attracting Fatou domain of a rational map f. We prove that there exist a rational map g and a completely invariant Fatou domain V of g such that (f,U) and (g,V) are holomorphically conjugate, and each non-trivial Julia component of g is a quasi-circle which bounds an eventually superattracting Fatou domain of g containing at most one postcritical point of g. Moreover, g is unique up to a holomorphic conjugation.
出处 《Science China Mathematics》 SCIE 2008年第7期1167-1186,共20页 中国科学:数学(英文版)
基金 supported by the National Basic Research Programme of China (Grant No.2006CB805903) the National Natural Science Foundation of China (Grant No.10421101)
关键词 quasi-conformal surgery PUZZLES quasi-conformally conjugate invariant line fields 37F12 quasi-conformal surgery puzzles quasi-conformally conjugate invariant line fields
  • 相关文献

参考文献2

二级参考文献3

共引文献10

同被引文献1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部