期刊文献+

Maximal function characterizations of Hardy spaces on RD-spaces and their applications 被引量:12

Maximal function characterizations of Hardy spaces on RD-spaces and their applications
原文传递
导出
摘要 Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B. Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a "dimension" n. For α∈ (0, ∞) denote by Hαp(X ), Hdp(X ), and H?,p(X ) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calder′on reproducing formula, it is shown that all these Hardy spaces coincide with Lp(X ) when p ∈ (1, ∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H*,p(X ) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1), 1], it is proved that the space H?,p(X ), the Hardy space Hp(X ) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman and Weiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from Hp(X ) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
出处 《Science China Mathematics》 SCIE 2008年第12期2253-2284,共32页 中国科学:数学(英文版)
基金 supported by the National Science Foundation of USA (Grant No. DMS 0400387) the University of Missouri Research Council (Grant No. URC-07-067) the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425106) the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. 04-0142)
关键词 space of homogeneous type Calderón reproducing formula space of test function maximal function Hardy space ATOM Littlewood-Paley function sublinear operator quasi-Banach space 42B25 42B30 47B38 47A30 space of homogeneous type Caldero′n reproducing formula space of test function maximal function Hardy space atom Littlewood-Paley function sublinear operator quasi- Banach space
  • 相关文献

参考文献46

  • 1Alexander Nagel,Elias M. Stein.The $\square_b$-Heat equation on pseudoconvex manifolds of finite type in ${\mathbb C}^2$[J]. Mathematische Zeitschrift . 2001 (1)
  • 2Li Wenming Zhongshan University, China.A MAXIMAL FUNCTION CHARACTERIZATION 0F HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE[J].Analysis in Theory and Applications,1998,14(2):12-27. 被引量:6
  • 3Alexander Nagel,Elias M. Stein,Stephen Wainger.Balls and metrics defined by vector fields I: Basic properties[J]. Acta Mathematica . 1985 (1)
  • 4C. Fefferman,E. M. Stein.H p spaces of several variables[J]. Acta Mathematica . 1972 (1)
  • 5Elias M. Stein,Guido Weiss.On the theory of harmonic functions of several variables[J]. Acta Mathematica . 1960 (1-2)
  • 6Danielli D,Garofalo N,Nhieu D M.Non-doubling Ahlfors measures, perimeter measures, and the charac- terization of the trace spaces of Sobolev functions in Carnot-Carath′eodory spaces. Memoirs of the American Mathematical Society . 2006
  • 7Han Y,,Mu¨ller D,Yang D.A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carath′eodory spaces. Abstract and Applied Analysis . 2008
  • 8Meda S,Sj¨ogren P,Vallarino M.On the H1-L1 boundedness of operators. Proceedings of the American Mathematical Society . 2008
  • 9Grafakos L,Liu L,Yang D.Radial maximal function characterizations for Hardy spaces on RD-spaces. Bulletin de la Socie te mathe matique de France .
  • 10Stein. Acta Mathematica . 1960

共引文献5

同被引文献104

引证文献12

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部