期刊文献+

A class of primitive substitutions and scrambled sets 被引量:7

A class of primitive substitutions and scrambled sets
原文传递
导出
摘要 Consider the subshifts induced by constant-length primitive substitutions on two symbols. By investigating the equivalent version for the existence of Li-Yorke scrambled sets and by proving the non-existence of Schweizer-Smítal scrambled sets, we completely reveal for this class of subshifts the chaotic behaviors possibly occurring in the sense of Li-Yorke and Schweizer-Smítal. Consider the subshifts induced by constant-length primitive substitutions on two symbols. By investigating the equivalent version for the existence of Li-Yorke scrambled sets and by proving the non-existence of Schweizer-Smítal scrambled sets, we completely reveal for this class of subshifts the chaotic behaviors possibly occurring in the sense of Li-Yorke and Schweizer-Smítal.
出处 《Science China Mathematics》 SCIE 2008年第3期369-375,共7页 中国科学:数学(英文版)
基金 the National Natural Science Foundation of China (Grant No. 10771084) the Education Department Foundation of Jilin Province (Grant No. 200568) the Foundations of Dalian Nationalities University and Jilin Normal University
关键词 primitive substitution SUBSHIFT Li-Yorke scrambled set Schweizer-Smítal scrambled set 54H20 58F03 58F08 primitive substitution subshift Li-Yorke scrambled set Schweizer-Smital scrambled set
  • 相关文献

参考文献21

  • 1XIONG Jincheng.Chaos in a topologically transitive system[J].Science China Mathematics,2005,48(7):929-939. 被引量:21
  • 2廖公夫,王立冬.几乎周期性与SS混沌集[J].数学年刊(A辑),2002,23(6):685-692. 被引量:13
  • 3熊金城.A CHAOTIC MAP WITH TOPOLOGICAL ENTROPY[J]Acta Mathematica Scientia,1986(04).
  • 4Xiong Jincheng.Chaos in a topologically transitive system[J]. Science in China Series A: Mathematics . 2005 (7)
  • 5Gongfu Liao,Lanyu Wang.Almost periodicity, chain recurrence and chaos[J]. Israel Journal of Mathematics . 1996 (1)
  • 6Zou Z L.Chaos and topological entropy. Acta Mathematica Sinica . 1998
  • 7Liao G F,Wang L Y.Almost periodicity, chain recurrence and chaos. Israel Journal of Mathematics . 1996
  • 8Blanchard F,Glasner E,Kolyada S, et al.On Li-Yorke pairs. Journal fur die Reine und Angewandte Mathematik . 2002
  • 9Pukula R.Various notion of chaos are not related. . 2001
  • 10Oprocha P.Relations between distributional and Devaney chaos. Chaos . 2006

二级参考文献10

  • 1Block, L. S. & Coppel, W. A., Dynamics in one dimension [M], Lecture Notes in Math.,1513, Springer-Verlag, New York, Berlin Heidelberg, 1992.
  • 2Liao Gongfu & Fan Qinjie, Minimal subshifts which display Schweizer-Smital chaos and have zero topological entropy[J],Science in China,Series A,41(1998),33-38;中文版:A辑,27(1997),769-774.
  • 3Walters, P., An introduction to ergodic theory [M], Springer-Verlag, New York, Berlin Heidelberg, 1982.
  • 4Schweizer, B. & Smital, J., Measures of chaos and a spetral decomposition of dynamical systems on the interval [J], Trans. Amer. Math. Soc., 344(1994), 737-754.
  • 5Erdos, P. & Stone, A. H., Some remarks on almost transformation [J], Bull. Amer.Math. Soc., 51(1945), 126-130.
  • 6Gottschalk, W. H., Orbit-closure decompositions and almost periodic properties [J],Bull. Amer. Math. Soc., 50(1944), 915-919.
  • 7Liao Gongfu & Wang Lanyu, Almost periodicity, chain recurrence and chaos [J], Israel J. Math., 93(1996), 145-156.
  • 8Jincheng Xiong,Ercai Chen.Chaos caused by a strong-mixing measure-preserving transformation[J].Science in China Series A: Mathematics.1997(3)
  • 9David Ruelle,Floris Takens.On the nature of turbulence[J].Communications in Mathematical Physics.1971(3)
  • 10Banks,J. Brooks,J. Cairns,G. et al.On Devaney’s definition of chaos, Amer.Math[].Monthly.1992

共引文献32

同被引文献12

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部