摘要
In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional discrete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.
In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional discrete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.
基金
Basic Scientific Research-related Project from Institute of Engineering Mechanics (01180001 and 2007C01)