期刊文献+

非线性互补问题转化为无约束优化问题的方法 被引量:1

Introduction of Reformulating the Nonlinear Complimentarity Problem as A Unconstrainned Minimization Problem
原文传递
导出
摘要 本文介绍一种带参数的NCP-函数,从而将非线性互补问题(NCP(F))先转化为非光滑方程组的形式,再引进相应价值函数等价地转化为无约束最优化问题的方法,并且还讨论了此NCP-函数,非光滑方程组和相应价值函数的性质。 This article introduce a class of one-parametric NCP-functions.This class of NCP-functions is used in order to reformulate the nonlinear coplementarity problem(NCP(F)) as a nonsmooth system of equations.After,,we may rewrite the NCP(F) as the unconstrainned minimization problem with corresponding merit function.Then we present properties of the NCP-functions, of the nonsmooth equation operator and of the corresponding merit function.
出处 《阴山学刊(自然科学版)》 2008年第2期5-6,10,共3页 Yinshan Academic Journal(Natural Science Edition)
关键词 NCP(F) NCP-函数 非光滑非程组 价值函数 无约束最优化问题 NCP-function nonsmooth system of equations merit function unconstrainned minimization problem
  • 相关文献

参考文献1

  • 1[法]塞阿(J·Cea) 著,胡毓达,郑权.最优化理论与算法[M]高等教育出版社,1982.

同被引文献15

  • 1Rohn J. Systems of linear interval equations[J]. Linear Algebra and Its Application, 1989, 126(11) :39-78.
  • 2Mangasarian 0 L, Meyer R R. Absolute value equations[J]. Linear Algebra and Its Application, 2006, 419(5) :359-367.
  • 3Mangasarian 0 L. A generalized Newton method for absolute value equations[J]. Optimization Letters, 2009, 3(1): 101-108.
  • 4Caccetta L, Qu B, Zhou G L. A globally and quadratically convergent method for absolute value equations[J]. Computation Optimiza- tion Application, 2011, 48(1): 45-58.
  • 5Wang A X, Wang H J, Deng Y K. Interval algorithm for absolute value equations[J]. Central European Journal Mathematics, 2011, 9 (5): 1171-1184.
  • 6Noor M A, Iqbal J, A1-Said E. On an iterative method for solving absolute value equations[J]. Optimization Letters, 2012, 6(5): 1027-1033.
  • 7Noor M A, Iqbal J, Khattri S, et al. A new iterative method for solving absolute value equations[J]. International Journal of the Phys- ical Sciences, 2011, 6(7): 1793-1797.
  • 8Clarke F H. Optimization and Nonsmooth Analysis[M]. Philadelphia: SIAM, 1990.
  • 9De Luca T, Facchinei F, Kanzow C. A semismooth equation approach to the solution of nonlinear complementarity problems[J] .Math Programming, 1996, 75: 407.
  • 10Hu S L, Huang Z H, Zhang Q. A generalized Newton method for absolute value equations associated with second order cones[J]. Computational Optimization and Applications, 2011,235: 1490-1501.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部