期刊文献+

基于粗集理论的工业制冷装置运行参数分析 被引量:2

Operating parameters of industrial refrigerating plants based on rough set theory
下载PDF
导出
摘要 分析了粗集理论在数据挖掘中的特点,基于粗集理论对一个实际工业制冷装置的运行参数进行了实例分析。实际运行参数从该工业制冷用户的历史运行记录中采集。经过合理筛选,用粗糙集理论约简属性,将制冷压缩机能耗的影响因素由9个降至4个,简化了对压缩机能耗的研究。根据大气干球温度的逐时变化和制冷压缩机的实际运行电流,推导出运行电流与大气干球温度关系的经验公式。结果表明,采用粗集理论来分析制冷运行参数,可以挖掘出运行数据中的潜在规律。 The features of rough set theory in data extraction are analyzed.Rough set theory is applied to historical records of operating parameters of an industrial refrigerating plant.From a set of nine recorded parameters,the number of relevant factors affecting the energy consumption of refrigerating compressors is reduced to j ust four by applying rough set theory to filter recorded data.This reduction of parameters allows the study of energy consumption of refrigerating compressors to be simplified and an experimental formula relating electrical current to dry bulb temperature to be determined.The results show that rough set theory can be used to analyze the operating parameters of refrigerating plants and the potential rules of the data set can be extracted.
出处 《化工学报》 EI CAS CSCD 北大核心 2008年第S2期176-180,共5页 CIESC Journal
基金 国家自然科学基金项目(50746021)~~
关键词 粗集理论 工业制冷 运行参数 大气干球温度 rough set theory industrial refrigeration operating parameter dry bulb temperature
  • 相关文献

参考文献2

二级参考文献37

  • 1谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 2王利,王国胤,吴渝.基于可变精度粗集模型的增量式规则获取算法[J].重庆邮电学院学报(自然科学版),2005,17(6):709-713. 被引量:8
  • 3胡昌华,许化龙.控制系统的故障诊断与容错控制的分析与设计[M].北京:国防工业出版社,2001:5-7.
  • 4Liu S L,Shi W G.Rough Set Intelligence Diagnostic System for Valves in Reciprocating Pumps[A].IEEE Proc of the American Control Conf[C].Arlington,2001:353-358.
  • 5Bonaldi E L,Borges S,Lamber T,et al.Using Rough Sets Techniques as a Fault Diagnosis Classifier for Induction Motors[A].IEEE Proc of the 4th World Congress on Intelligent Control and Automation[C].Shanghai,2002:3383-3388.
  • 6Zhao K,Wang J.A Reduction Algorithm Meeting Users' Requirements[J].J Computer Science and Technology,2002,23(9):578-593.
  • 7Zhang X D,Marisv P,Thomasp P.Robust Fault Isolation for a Class of Non-linear Input-output Systems[J].Int J Control,2001,74(13):1295-1310.
  • 8Karsten Spreitzer,Peter Balle.A Multi-model Approach for Detection and Isolation of Sensor and Process Faults for a Heat Exchanger[A].IEEE Proc of the American Control Conf[C].Chicago,2000:2720-2724.
  • 9SIMON H A.The Sciences of the Artificial[M].2ed.MA:MIT Press,1981.
  • 10KAUFMAN K A,MICHALSKI R S.Learning in an Inconsistent World:Rule Selection in AQ18[R].Machine Learning and Inference Laboratory of George Mason University,1999.

共引文献17

同被引文献18

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部