期刊文献+

Optimization and static strength test of carbody of light rail vehicle

Optimization and static strength test of carbody of light rail vehicle
下载PDF
导出
摘要 Preliminary structure of light rail vehicle (LRV) carbody made of steel was designed considering its usage, strength, manufacturing, etc. Based on the finite element analysis, the optimization of design parameters associated with thickness of LRV carbody is carried out to increase the whole strength of the carbody and to reduce its mass. With the aids of the substructure technique and the modified technique with discrete variables in the optimization based on the finite element method, the consumed computing time is reduced dramatically. The optimized LRV carbody is re-analyzed by FEM to obtain its static strength and vibrating mode and is manufactured. The mass of the optimized carbody reduces about 1.3 kg, and the relative reduction ratio is about 10%. Then, the strength test of the real carbody under the static load is executed. It is shown by the numerical and test results that the design requirements of the LRV carbody are satisfying. The newly designed carbody is used in the LRV, which is the first one used commercially developed by China independently. Nowadays, the LRV is running on the transportation circuit in Changchun of China. Preliminary structure of light rail vehicle (LRV) carbody made of steel was designed considering its usage, strength, manufacturing, etc. Based on the finite element analysis, the optimization of design parameters associated with thickness of LRV carbody is carried out to increase the whole strength of the carbody and to reduce its mass. With the aids of the substructure technique and the modified technique with discrete variables in the optimization based on the finite element method, the consumed computing time is reduced dramatically. The optimized LRV carbody is re-analyzed by FEM to obtain its static strength and vibrating mode and is manufactured. The mass of the optimized carbody reduces about 1.3 kg, and the relative reduction ratio is about 10%. Then, the strength test of the real carbody under the static load is executed. It is shown by the numerical and test results that the design requirements of the LRV carbody are satisfying. The newly designed carbody is used in the LRV, which is the first one used commercially developed by China independently. Nowadays, the LRV is running on the transportation circuit in Changchun of China.
出处 《Journal of Central South University》 SCIE EI CAS 2008年第S2期288-292,共5页 中南大学学报(英文版)
关键词 OPTIMIZATION LRV carbody STRENGTH MODAL ANALYSIS SUBSTRUCTURE optimization LRV carbody strength modal analysis substructure
  • 相关文献

参考文献3

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部