期刊文献+

Analyses of temperature and humidity profiles and heat balance of the surface boundary-layer in the hinterland of the Taklimakan Desert 被引量:4

Analyses of temperature and humidity profiles and heat balance of the surface boundary-layer in the hinterland of the Taklimakan Desert
原文传递
导出
摘要 The daily variation regularities of micro-meteorological features, such as the surface layer temperature and humidity profiles of the inner desert in summer, the temperature of sand bed, the radiation of the earth's surface and the heat balance, were analyzed by combination method and logarithm regression according to the data obtained from the Atmospheric Environmental Observation Station of Taklimakan Desert in July―August of 2006 and 2007. It has been shown that temperature inversion occurred near the surface layer at night in summer, the temperature increased with the height within a certain altitude range, and the reverse was true during the daytime. The ground surface radiation balance of the Taklimakan Desert was mainly positive; other radiation components (the global radiation, the reflective radiation, the ground upward long wave radiation and the net radiation) exhibited daily variation char- acteristics evidently and showed normal diurnal cycle, except for the downward atmospheric long-wave radiation. The heat exchange of the surface layer of the desert was dominated by turbulence sensible heat, and only a small portion of heat was transferred to the atmospheric surface layer in the form of latent heat. The surface sensible heat and latent heat changed with the increase and decrease of sun elevation angle, with maximum of the latent heat appearing in wee hours and the peak value of the sensible heat appearing at noon. Observation and analysis showed that heating effect of the underlying surface of the desert was great on the aerosphere; the surface was a high heat source during the day and became a weak cold source at night. The daily variation regularities of micro-meteorological features, such as the surface layer temperature and humidity profiles of the inner desert in summer, the temperature of sand bed, the radiation of the earth’s surface and the heat balance, were analyzed by combination method and logarithm regression according to the data obtained from the Atmospheric Environmental Observation Station of Taklimakan Desert in July–August of 2006 and 2007. It has been shown that temperature inversion occurred near the surface layer at night in summer, the temperature increased with the height within a certain altitude range, and the reverse was true during the daytime. The ground surface radiation balance of the Taklimakan Desert was mainly positive; other radiation components (the global radiation, the reflective radiation, the ground upward long wave radiation and the net radiation) exhibited daily variation characteristics evidently and showed normal diurnal cycle, except for the downward atmospheric long-wave radiation. The heat exchange of the surface layer of the desert was dominated by turbulence sensible heat, and only a small portion of heat was transferred to the atmospheric surface layer in the form of latent heat. The surface sensible heat and latent heat changed with the increase and decrease of sun elevation angle, with maximum of the latent heat appearing in wee hours and the peak value of the sensible heat appearing at noon. Observation and analysis showed that heating effect of the underlying surface of the desert was great on the aerosphere; the surface was a high heat source during the day and became a weak cold source at night.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2008年第S2期22-30,共9页
基金 Supported by Special Social Commonweal Research of Ministry of Science and Technology of China (Meteorology, Grant No.GYHY200706008) National Natural Science Foundation of China (Grant Nos. 40475041 and 40775019)
关键词 Taklimakan DESERT temperature PROFILE humidity PROFILE RADIATION BALANCE heat BALANCE Taklimakan Desert temperature profile humidity profile radiation balance heat balance
  • 相关文献

参考文献22

二级参考文献174

共引文献586

同被引文献166

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部