期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
转化是前提 模型是关键——浅谈解三角形
原文传递
导出
摘要
正弦定理和余弦定理是表示三角形边角之间的数量关系的规律.在解三角形时,我们应充分关注问题的几何背景,利用正弦定理、余弦定理和向量等工具实现三角形的边角互化,通过建立方程(组)、函数关系(即建立问题的数学模型),达到确定三角形的目的.
作者
戴三红
机构地区
宁波效实中学
出处
《中学生天地(高中学习版)(C版)》
2007年第10期19-22,共4页
Yeenagers world
关键词
解三角形
正弦定理
余弦定理
三角形面积公式
数学模型
函数关系
建立方程
条件转化
向量
数量关系
分类号
G634.6 [文化科学—教育学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
0
共引文献
0
同被引文献
0
引证文献
0
二级引证文献
0
1
华腾飞.
正弦定理与余弦定理的应用[J]
.理科考试研究(高中版),2010(9):13-14.
2
韦均艺.
重点内容 学以致用——函数与方程思想复习指导与能力提升[J]
.中学理科(高考导航),2005(1):36-37.
3
姚元.
浅谈不等式中的最值问题的巧妙结合[J]
.数理化解题研究(高中版),2016,0(11):32-33.
4
张绍平.
如何引导学生学习两步计算的应用题[J]
.甘肃教育,2003(6):33-33.
5
董军.
函数与方程思想在解题中的应用[J]
.中学数学教学参考,2016,0(8X):41-42.
被引量:2
6
杜晶芳.
轨迹问题中条件使用的选择[J]
.数学教学通讯(中教版),2000,23(8):16-17.
7
王新明.
范围问题中函数与方程思想的运用[J]
.新高考(语文备考),2008,0(Z1):81-83.
8
张月晴.
函数与方程[J]
.数学教学通讯(数学金刊)(高考),2014,0(9):31-33.
9
董晓萍.
一个椭圆问题的探究及推广[J]
.数理化解题研究(高中版),2014,0(9):10-10.
10
王雄伟,许少雄.
一道题目所含的数学思想[J]
.福建中学数学,2009(5):40-41.
中学生天地(高中学习版)(C版)
2007年 第10期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部