摘要
讨论加权空间L_W^2(Rd)上的Gabor框架,得到该空间具有向量Gabor框架的一个必要条件,即权函数W(x)满足0<A≤W(x)≤B<+∞,a.e.,A、B为常数。进而说明加权空间L2W(Rd)与空间L2(Rd)本质上一样,从而L2W(Rd)上不存在Gabor框架,除非权函数W(t)是本质有界的。
Discussing Gabor frames on space L2W(T5Rd),we get essential condition of weight function W(x) when there exists Gabor frame on L2W(Rd),the weight function W(x) satisfies:0<A≤W(S)≤B<+∞,a.e.where A and B are two constants.We further show that the space L2(Rd) is essentially as the same as L2W(Rd).Thereby,three doesn′t exist any Gabor frame on weighted space L2W(Rd) unless the weight function W(x) is essential bounded.
出处
《重庆师范大学学报(自然科学版)》
CAS
2004年第2期12-14,共3页
Journal of Chongqing Normal University:Natural Science