期刊文献+

加权空间L_W^2(R^d)上的向量Gabor框架

Vector Gabor Frames on Weighted Lebesgue SpaceL_W^2 (R^d)
下载PDF
导出
摘要 讨论加权空间L_W^2(Rd)上的Gabor框架,得到该空间具有向量Gabor框架的一个必要条件,即权函数W(x)满足0<A≤W(x)≤B<+∞,a.e.,A、B为常数。进而说明加权空间L2W(Rd)与空间L2(Rd)本质上一样,从而L2W(Rd)上不存在Gabor框架,除非权函数W(t)是本质有界的。 Discussing Gabor frames on space L2W(T5Rd),we get essential condition of weight function W(x) when there exists Gabor frame on L2W(Rd),the weight function W(x) satisfies:0<A≤W(S)≤B<+∞,a.e.where A and B are two constants.We further show that the space L2(Rd) is essentially as the same as L2W(Rd).Thereby,three doesn′t exist any Gabor frame on weighted space L2W(Rd) unless the weight function W(x) is essential bounded.
出处 《重庆师范大学学报(自然科学版)》 CAS 2004年第2期12-14,共3页 Journal of Chongqing Normal University:Natural Science
关键词 加权空间 GABOR框架 紧支集 HILBERT空间 可积函数空间 weight function frame Gabor frame compact support
  • 相关文献

参考文献5

  • 1DAUBECHIES I. The Wavelet Transform,Time-frequency Localization and Signal Analysis[J]. IEEE Trans Inform Theory, 1990,39:961-1005.
  • 2DAUBECHIES I. Ten Lectures on Wavelets [ J ]. SIAM,Philadelphia, 1992,61 ( 1 ): 181-226.
  • 3HEIL C, WALNUT D. Continuous and Discrete Wavelet Transform [ J ]. SIAM Review, 1989,31 (4) :628-666.
  • 4FEICHTINGER H G,STROHMER T. Gabor Analysis and Algorithms :Theory and Applications [M]. Birkhauser, 1998.
  • 5BENEDETIO J J,WALNUT D. Gabor Franes for L2 and Related Spaces [ A ]. Benedetto J J,Frazier M W. Wavelets: Mathematics and Applications [ C ]. Boca Raton FL: CRC Press, 1994,97-162.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部