摘要
Objective For a brushless AC generator with a rotary rectifier, it is necessary and significant to model and simulate at normal and fault operation states. Methods Two new concepts, namely, Simulink signals and PSB(Power System Blockset) variables, are proposed, and the difference between the two concepts is clarified. Based on the new model for synchronous machines \, a simulation model for a brushless AC generator with a rotary rectifier is constructed by Matlab/Simulink/PSB. This new model, which has a speed input terminal and an exciting voltage input one, can simulate the real electrical characters and direct mechanical connection between two synchronous machines perfectly. The rotary rectifier is a three-phase full-wave bridge rectifier which consists of six diodes. The model for the diodes is a macro-model which possesses much better accuracy than an ideal one of switches. Results Based on the present model, some simulation results such as exciting current waveform, phase current waveform and phase voltbge waveform are afftained at several operation conditions. Conclusion The simulation for a brushless AC generator with a rotary rectifier is demonstrated at normal and fault operation states, respectively. The results confirm the presented method.
Objective For a brushless AC generator with a rotary rectifier, it is necessary and significant to model and simulate at normal and fault operation states. Methods Two new concepts, namely, Simulink signals and PSB(Power System Blockset) variables, are proposed, and the difference between the two concepts is clarified. Based on the new model for synchronous machines \, a simulation model for a brushless AC generator with a rotary rectifier is constructed by Matlab/Simulink/PSB. This new model, which has a speed input terminal and an exciting voltage input one, can simulate the real electrical characters and direct mechanical connection between two synchronous machines perfectly. The rotary rectifier is a three-phase full-wave bridge rectifier which consists of six diodes. The model for the diodes is a macro-model which possesses much better accuracy than an ideal one of switches. Results Based on the present model, some simulation results such as exciting current waveform, phase current waveform and phase voltbge waveform are afftained at several operation conditions. Conclusion The simulation for a brushless AC generator with a rotary rectifier is demonstrated at normal and fault operation states, respectively. The results confirm the presented method.
基金
ThisstudywassupportedbytheQinlanProjectofLanzhouJiaotongUniversity.