期刊文献+

CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK

CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK
下载PDF
导出
摘要 Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme. Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme.
出处 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期97-100,109,共5页 药物分析学报(英文版)
基金 ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina (No .3 0 3 70 3 95 )
关键词 adaptive RBF network EEG mental task adaptive RBF network EEG mental task
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部