期刊文献+

节理岩体中应力波传播规律研究的进展 被引量:24

The Progress in Study of Regularity of a Stress Wave Propagation in the Jointed Rock Mass
下载PDF
导出
摘要 讨论了位移不连续模型与特征值法结合的方法,对垂直于单一线性变形节理、多个平行线性变形节理、单一非线性变形节理,分别采用线性变形不连续模型、双曲线变形不连续模型(BB模型)进行的理论与相应的实验研究。用离散元程序UDEC,对上述问题进行数值模拟;用三维离散元程序3DEC,对节理岩体中三维波的传播进行的数值模拟。并用UDEC与有限差分程序AUTODYN-2D耦合,模拟爆炸过程及爆炸波在节理岩体中的传播。同时提出了几个有待研究的问题。 The following subjects are discussed in this paper. For the rock masses containing a single linearly deformable joint, multiple parallel linearly deformable joints and a single nonlinearly deformable joint, the method of characteristics combined with displacement discontinuity model was used to solve the problem of wave propagation. The linear displacement discontinuity model was used in solving the linearly deformable jointed rock mass problem. The hyperbolic elastic mode (BB model) was used in solving the nonlinearly deformable jointed rock mass problem. The discrete element method program by the name of Universal Distinct Element Code (UDEC) was used to analyze the problems mentioned above. The coupled method of the discrete element method program UDEC and the finite difference program AUTODYN-2D was used to simulate the explosion process and the propagation of blast waves in a jointed rock mass.
出处 《岩土力学》 EI CAS CSCD 北大核心 2003年第S2期602-605,610,共5页 Rock and Soil Mechanics
关键词 岩石动力学 节理岩体 综述 应力波 进展 rock dynamics jointed rock mass overview stress wave progress
  • 相关文献

参考文献3

  • 1赵坚,陈寿根,蔡军刚,宋宏伟.用UDEC模拟爆炸波在节理岩体中的传播[J].中国矿业大学学报,2002,31(2):111-115. 被引量:56
  • 2J. Zhao,J. G. Cai. Transmission of Elastic P-waves across Single Fractures with a Nonlinear Normal Deformational Behavior[J] 2001,Rock Mechanics and Rock Engineering(1):3~22
  • 3S. G. Chen,J. G. Cai,J. Zhao,Y. X. Zhou. Discrete element modelling of an underground explosion in a jointed rock mass[J] 2000,Geotechnical and Geological Engineering(2):59~78

二级参考文献22

  • 1[1]Goodman R E. Methods of geological engineering in discontinuous rocks[M]. St Paul: West Publishing, 1976.135-140.
  • 2[2]Goodman R E, Taylor R L, Brekke T A. A model of the mechanics of jointed rock[J]. J Soil Mech Div, ASCE, 1968, 94: 637-659.
  • 3[3]Ghaboussi J, Wilson E L, Isenberg J. Finite ele-ments for rock joints and interfaces[J]. J Soil Mech Div, ASCE, 1973, 99: 833-848.
  • 4[4]Beer G.Implementation of combined boundary ele- ment-finite element analysis with applications in geomechanics[A]. Banerjee P K, Watson J O. Developments in Boundary Element Methods[C]. London: Applied Science, 1986. 191-226.
  • 5[5]Crotty J M, Wardle L J. Boundary integral analysis of piecewise homogeneous media with structural discontinuities[J]. Int J Rock Mech Min Sci Geomech Abstr, 1985, 22: 419-427.
  • 6[6]Pande G N, Beer G, Williams J R. Numerical me- thods in rock mechanics[M]. New York: Wiley, 1990.120-140.
  • 7[7]Schwer L E, Lindberg H E. Application brief: a fin-ite element slideline approach for calculating tunnel response in jointed rock[J]. Int J Num Anal Methods Geomech,1992, 16: 529-540.
  • 8[8]Cundall P A. A computer model for simulating pro-gressive large scale movements in blocky rock system[A]. Proc Symp Int Soc Rock Mechanics, Nancy, France. 1971,1: paper II-8.
  • 9[9]Henrych J. The dynamic of explosion and its use [M]. Amsterdam: Elsevier, 1979.125-135.
  • 10[10]Pyrak-Nolte L J. Seismic visibility of fractures[D]. University of California, Berkeley. 1988.

共引文献55

同被引文献202

引证文献24

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部