期刊文献+

Photoluminescence of Zn_2SiO_4∶Mn^(2+) Prepared by Combustion Technique

Photoluminescence of Zn_2SiO_4∶Mn^(2+) Prepared by Combustion Technique
下载PDF
导出
摘要 Manganese-doped zinc silicate powder samples were prepared successfully by solution combustion process,and their photoluminescence were investigated in ultraviolet region. The single-phase of Zn_(2- x )SiO_4: x Mn (0≤ x ≤0.10,willemite) was obtained by combustion synthesis at 600 ℃ for afew minutes,then heat treated at above 900 ℃ for 4 h. In the excitation spectra of Zn_(2- x )SiO_4: x Mn (0< x ≤0.10),the strongest broad band at about 254 nm is observed and assigned to (() 6A_1)→(() 4T_1) transition of Mn (2+) monitoring at 525 nm emission. At about 525 nm,the intense broad band emission is observed under 254 nm excitation in Zn_(2- x )SiO_4: x Mn (0< x ≤0.10). This broad band is attributed to (() 4T_1)→(() 6A_1) transition of Mn (2+). The results indicate that photoluminescence efficiency,the location of the strongest excitation or emission band,and the optimum concentration of activator depend on starting materials,combustion temperatures,the dosage of fuels,and the size of powder samples etc.. Manganese-doped zinc silicate powder samples were prepared successfully by solution combustion process,and their photoluminescence were investigated in ultraviolet region. The single-phase of Zn_(2- x )SiO_4: x Mn (0≤ x ≤0.10,willemite) was obtained by combustion synthesis at 600 ℃ for afew minutes,then heat treated at above 900 ℃ for 4 h. In the excitation spectra of Zn_(2- x )SiO_4: x Mn (0< x ≤0.10),the strongest broad band at about 254 nm is observed and assigned to (() 6A_1)→(() 4T_1) transition of Mn (2+) monitoring at 525 nm emission. At about 525 nm,the intense broad band emission is observed under 254 nm excitation in Zn_(2- x )SiO_4: x Mn (0< x ≤0.10). This broad band is attributed to (() 4T_1)→(() 6A_1) transition of Mn (2+). The results indicate that photoluminescence efficiency,the location of the strongest excitation or emission band,and the optimum concentration of activator depend on starting materials,combustion temperatures,the dosage of fuels,and the size of powder samples etc..
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第S1期28-32,共5页 稀土学报(英文版)
基金 ProjectsupportedbytheNSFC (5 0 2 72 0 2 6)andEYTP (ExcellentYoungTeachersProgramofM0E,P .R .C .)
关键词 Zn_2SiO_4∶Mn combustion technique PHOSPHORS rare earths Zn_2SiO_4∶Mn combustion technique phosphors rare earths
  • 相关文献

参考文献4

二级参考文献13

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部